Your browser doesn't support javascript.
loading
Characterising microplastics in shower wastewater with Raman imaging.
Luo, Yunlong; Gibson, Christopher T; Tang, Youhong; Naidu, Ravi; Fang, Cheng.
Afiliação
  • Luo Y; Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
  • Gibson CT; Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park 5042, Australia.
  • Tang Y; Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia.
  • Naidu R; Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
  • Fang C; Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia. Electronic address: cheng.fang
Sci Total Environ ; 811: 152409, 2022 Mar 10.
Article em En | MEDLINE | ID: mdl-34923349
ABSTRACT
Microplastics can potentially be released in our daily activities, such as via our showers, as our clothes are made of plastic fibres, and/or cotton fibres. The challenge is how to characterise these microplastics in shower debris. Herewith we employ Raman imaging to directly visualise the microplastics collected from shower wastewater. Raman can map an image from the scanning array that contains a matrix of thousands of spectra, featuring a considerably higher signal-noise ratio than that from a single spectrum. The increased signal-noise ratio reduces the complexity of sample preparation. Consequently, after the shower debris was sampled and washed, Raman imaging allowed us to distinguish the microplastic fibres from the background including cotton fibres and dirt aggregates. Interestingly, by adjusting the laser power intensity, the scanning process enabled simultaneous in-situ bleaching of the colorants formulated in the textile fibres and collection of signals. The disadvantage of Raman imaging such as the short focusing/working distance is also presented and discussed. Overall, the Raman imaging can extract meaningful information from the complex shower debris samples to enable analysis of microplastics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microplásticos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microplásticos Idioma: En Ano de publicação: 2022 Tipo de documento: Article