Your browser doesn't support javascript.
loading
Hydroxylation of pregnenolone and dehydroepiandrosterone by zygomycete Backusella lamprospora VKM F-944: selective production of 7α-OH-DHEA.
Kollerov, Vyacheslav; Shutov, Andrei; Kazantsev, Alexey; Donova, Marina.
Afiliação
  • Kollerov V; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow region, Russia. svkollerov@rambler.ru.
  • Shutov A; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow region, Russia.
  • Kazantsev A; Chemical Department, Moscow State University, GSP-1, Leninskiye Gori, 1, Moscow, Russia.
  • Donova M; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow region, Russia.
Appl Microbiol Biotechnol ; 106(2): 535-548, 2022 Jan.
Article em En | MEDLINE | ID: mdl-34939135
ABSTRACT
In this paper, we studied the transformation of two 3ß-hydroxy-5-ene-steroids-pregnenolone and dehydroepiandrosterone (DHEA) by Backusella lamprospora VKM F- 944. The soil-dwelling zygomycete wild-type strain has been earlier selected during the screening and previously unexplored for this purpose. The fungus fully converted pregnenolone to form a mixture of axial 7α-hydroxy-pregnenolone and 7α,11α-dihydroxy-pregnenolone, while no metabolites with ß-orientation of the hydroxyl group were detected. The pathway to 7α,11α-diOH-pregnenolone seems to include 7α-hydroxylation of 11α-hydroxylated derivative. The only product from DHEA was identified as 7α-hydroxy-DHEA. The structures of steroid metabolites were confirmed by HPLC, mass-spectrometry (MS), and 1H and 13C NMR analyses. Under the optimized conditions, the yield of 7α-OH-DHEA reached 94% (w/w) or over 14 g/L in absolute terms, even at high concentration of the substrate (DHEA) (15 g/L). To our knowledge, it is the highest yield of the value-added 7α-OH-DHEA reported so far. The results contribute to the knowledge of the diversity of the wild-type fungal strains capable of effective steroid hydroxylation. They could be applied for the production of allylic steroid 7α-alcohols that are widely used in medicine. KEY POINTS • Zygomycete Backusella lamprospora actively hydroxylates 3ß-hydroxy-5-en-steroids. • Axial 7α-hydroxylation is the preferable reaction by the strain towards pregnenolone and DHEA. • The strain selectively produces 7α-OH-DHEA even at high substrate concentrations (up to 15 g/L).
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pregnenolona / Mucorales Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pregnenolona / Mucorales Idioma: En Ano de publicação: 2022 Tipo de documento: Article