Your browser doesn't support javascript.
loading
Direct Viral RNA Detection of SARS-CoV-2 and DENV in Inactivated Samples by Real-Time RT-qPCR: Implications for Diagnosis in Resource Limited Settings with Flavivirus Co-Circulation.
Mao, Zhan Qiu; Fukuta, Mizuki; Balingit, Jean Claude; Nguyen, Thi Thanh Ngan; Nguyen, Co Thach; Inoue, Shingo; Nguyen, Thi Thu Thuy; Nguyen, Le Khanh Hang; Minakawa, Noboru; Morita, Kouichi; Le, Thi Quynh Mai; Hasebe, Futoshi; Moi, Meng Ling.
Afiliação
  • Mao ZQ; Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
  • Fukuta M; Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
  • Balingit JC; Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
  • Nguyen TTN; Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam.
  • Nguyen CT; Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam.
  • Inoue S; Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
  • Nguyen TTT; Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam.
  • Nguyen LKH; Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam.
  • Minakawa N; Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
  • Morita K; Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
  • Le TQM; Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam.
  • Hasebe F; Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
  • Moi ML; Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
Pathogens ; 10(12)2021 Nov 29.
Article em En | MEDLINE | ID: mdl-34959513
ABSTRACT
The RT-qPCR method remains the gold standard and first-line diagnostic method for the detection of SARS-CoV-2 and flaviviruses, especially in the early stage of viral infection. Rapid and accurate viral detection is a starting point in the containment of the COVID-19 pandemic and flavivirus outbreaks. However, the shortage of diagnostic reagents and supplies, especially in resource-limited countries that experience co-circulation of SARS-CoV-2 and flaviviruses, are limitations that may result in lesser availability of RT-qPCR-based diagnostic tests. In this study, the utility of RNA-free extraction methods was assessed for the direct detection of SARS-CoV-2 and DENV-2 in heat-inactivated or chemical-inactivated samples. The findings demonstrate that direct real-time RT-qPCR is a feasible option in comparison to conventional real-time RT-qPCR based on viral genome extraction-based methods. The utility of heat-inactivation and direct real-time RT-qPCR for SARS-CoV-2, DENV-2 viral RNA detection was demonstrated by using clinical samples of SARS-CoV-2 and DENV-2 and spiked cell culture samples of SARS-CoV-2 and DENV-2. This study provides a simple alternative workflow for flavivirus and SARS-CoV-2 detection that includes heat inactivation and viral RNA extraction-free protocols, with aims to reduce the risk of exposure during processing of SARS-CoV-2 biological specimens and to overcome the supply-chain bottleneck, particularly in resource limited settings with flavivirus co-circulation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Guideline Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Guideline Idioma: En Ano de publicação: 2021 Tipo de documento: Article