Your browser doesn't support javascript.
loading
Assembling Silver Cluster-Based Organic Frameworks for Higher-Performance Hypergolic Properties.
Wang, Chao; Wang, Ya-Jie; He, Chun-Lin; Wang, Qian-You; Zang, Shuang-Quan.
Afiliação
  • Wang C; Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
  • Wang YJ; Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
  • He CL; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China.
  • Wang QY; Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
  • Zang SQ; Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
JACS Au ; 1(12): 2202-2207, 2021 Dec 27.
Article em En | MEDLINE | ID: mdl-34977891
ABSTRACT
Increasing research efforts have been focused on developing next-generation propellants. In this work, we demonstrated that assembling zero-dimensional (0D) silver clusters with energetic ligands into 3D metal organic frameworks (MOFs) not only inherited the short ignition delay (ID) time of the alkynyl-silver cluster but also significantly increased the output energy. Among them, the open cationic framework of ZZU-363 incorporating counter NO3 - ions achieved a considerably reduced energy barrier and eventually the shortest ID time (26 ms), together with the highest volumetric energy density (40.4 kJ cm-3) and specific impulse (263.1 s), which is far superior to traditional hydrazine-based propellants. The underlying mechanisms are clearly revealed by theoretical calculations. This work opens a venue to significantly enhancing the hypergolic activity of metal clusters and MOFs.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article