Your browser doesn't support javascript.
loading
Two Recurrent Neural Networks With Reduced Model Complexity for Constrained l1-Norm Optimization.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6173-6185, 2023 Sep.
Article em En | MEDLINE | ID: mdl-34986103
ABSTRACT
Because of the robustness and sparsity performance of least absolute deviation (LAD or l1 ) optimization, developing effective solution methods becomes an important topic. Recurrent neural networks (RNNs) are reported to be capable of effectively solving constrained l1 -norm optimization problems, but their convergence speed is limited. To accelerate the convergence, this article introduces two RNNs, in form of continuous- and discrete-time systems, for solving l1 -norm optimization problems with linear equality and inequality constraints. The RNNs are theoretically proven to be globally convergent to optimal solutions without any condition. With reduced model complexity, the two RNNs can significantly expedite constrained l1 -norm optimization. Numerical simulation results show that the two RNNs spend much less computational time than related RNNs and numerical optimization algorithms for linearly constrained l1 -norm optimization.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article