Your browser doesn't support javascript.
loading
Photoactive "Bionic Virus" Robustly Elicits the Synergy Anticancer Activity of Immunophotodynamic Therapy.
Chen, Kerong; Li, Huipeng; Xu, Yurui; Ge, Haixiong; Ning, Xinghai.
Afiliação
  • Chen K; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, Ch
  • Li H; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, Ch
  • Xu Y; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, Ch
  • Ge H; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, Ch
  • Ning X; National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, Ch
ACS Appl Mater Interfaces ; 14(3): 4456-4468, 2022 Jan 26.
Article em En | MEDLINE | ID: mdl-35021012
Coronavirus represents an inspiring model for designing drug delivery systems due to its unique infection machinery mechanism. Herein, we have developed a biomimetic viruslike nanocomplex, termed SDN, for improving cancer theranostics. SDN has a unique core-shell structure consisting of photosensitizer chlorin e6 (Ce6)-loaded nanostructured lipid carrier (CeNLC) (virus core)@poly(allylamine hydrochloride)-functionalized MnO2 nanoparticles (virus spike), generating a virus-mimicking nanocomplex. SDN not only prompted cellular uptake through rough-surface-mediated endocytosis but also achieved mitochondrial accumulation by the interaction of cationic spikes and the anionic mitochondrial surface, leading to mitochondria-specific photodynamic therapy. Meanwhile, SDN could even mediate oxygen generation to relieve tumor hypoxia and, consequently, improve macrophage-associated anticancer immune response. Importantly, SDN served as a robust magnetic resonance imaging (MRI) contrast agent due to the fast release of Mn2+ in the presence of intracellular redox components. We identified that SDN selectively accumulated in tumors and released Mn2+ to generate a 5.71-fold higher T1-MRI signal, allowing for effectively detecting suspected tumors. Particularly, SDN induced synergistic immunophotodynamic effects to eliminate malignant tumors with minimal adverse effects. Therefore, we present a novel biomimetic strategy for improving targeted theranostics, which has a wide range of potential biomedical applications.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistemas de Liberação de Medicamentos / Nanopartículas / SARS-CoV-2 / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistemas de Liberação de Medicamentos / Nanopartículas / SARS-CoV-2 / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article