Your browser doesn't support javascript.
loading
Efficacy of the Ketogenic Diet for Pediatric Epilepsy According to the Presence of Detectable Somatic mTOR Pathway Mutations in the Brain.
Ko, Ara; Sim, Nam Suk; Choi, Han Som; Yang, Donghwa; Kim, Se Hee; Lee, Joon Soo; Kim, Dong Seok; Lee, Jeong Ho; Kim, Heung Dong; Kang, Hoon-Chul.
Afiliação
  • Ko A; Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea.
  • Sim NS; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
  • Choi HS; Department of Pediatrics, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, Korea.
  • Yang D; Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
  • Kim SH; Department of Pediatrics, National Health Insurance Service Ilsan Hospital, Goyang, Korea.
  • Lee JS; Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
  • Kim DS; Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
  • Lee JH; Department of Neurosurgery, Pediatric Neurosurgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
  • Kim HD; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
  • Kang HC; Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea. hdkimmd@yuhs.ac.
J Clin Neurol ; 18(1): 71-78, 2022 Jan.
Article em En | MEDLINE | ID: mdl-35021279
BACKGROUND AND PURPOSE: A multifactorial antiepileptic mechanism underlies the ketogenic diet (KD), and one of the proposed mechanisms of action is that the KD inhibits the mammalian target of rapamycin (mTOR) pathway. To test this clinically, this study aimed to determine the efficacy of the KD in patients with pathologically confirmed focal cortical dysplasia (FCD) due to genetically identifiable mTOR pathway dysregulation. METHODS: A cohort of patients with pathologically confirmed FCD after epilepsy surgery and who were screened for the presence of germline and somatic mutations related to the mTOR pathway in peripheral blood and resected brain tissue was constructed prospectively. A retrospective review of the efficacy of the prior KD in these patients was performed. RESULTS: Twenty-five patients with pathologically confirmed FCD and who were screened for the presence of detectable somatic mTOR pathway mutations had received a sufficient KD. Twelve of these patients (48.0%) had germline or somatic detectable mTOR pathway mutations. A response was defined as a ≥50% reduction in seizure frequency. The efficacy of the KD after 3 months of dietary therapy was superior in patients with detectable mTOR pathway mutations than in patients without detectable mTOR pathway mutations, although the difference was not statistically significant (responder rates of 58.3% vs. 38.5%, p=0.434). CONCLUSIONS: A greater proportion of patients with mTOR pathway responded to the KD, but there was no statistically significant difference in efficacy of the KD between patients with and without detectable mTOR pathway mutations. Further study is warranted due to the smallness of the sample and the limited number of mTOR pathway genes tested in this study.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article