Your browser doesn't support javascript.
loading
Antibacterial and Antioxidant Effects of Magnesium Alloy on Titanium Dental Implants.
Bai, Yang; Wang, Lin; Zhao, Lisheng; Lingling, E; Yang, Shuo; Jia, Shunyi; Wen, Ning.
Afiliação
  • Bai Y; Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
  • Wang L; Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
  • Zhao L; Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
  • Lingling E; Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
  • Yang S; Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
  • Jia S; Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
  • Wen N; Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
Comput Math Methods Med ; 2022: 6537676, 2022.
Article em En | MEDLINE | ID: mdl-35035523
ABSTRACT

OBJECTIVES:

In this study, a new type of dental implant by covering the surface of the titanium (Ti) implant with zinc-magnesium (Zn-Mg) alloy was designed, to study the antibacterial and antioxidant effects of Mg alloy on titanium (Ti) implants in oral implant restoration.

METHODS:

Human gingival fibroblasts (HGFs), S. sanguinis, and F. nucleatum bacteria were used to detect the bioactivity and antibacterial properties of Mg alloy-coated Ti implants. In addition, B6/J mice implanted with different materials were used to further detect their antibacterial and antioxidant properties.

RESULTS:

The results showed that Mg alloy could better promote the adhesion and proliferation and improve the alkaline phosphatase (ALP) activity of HGFs, which contributed to better improved stability of implant osseointegration. In addition, Mg alloy could better inhibit the proliferation of S. sanguinis, while no significant difference was found in the proliferation of F. nucleatum between the two implants. In the mouse model, the peripheral inflammatory reaction and oxidative stress of the Mg alloy implant were significantly lower than those of the Ti alloy implant.

CONCLUSIONS:

Zn-Mg alloy-coated Ti implants could better inhibit the growth of Gram-positive bacteria in the oral cavity, inhibit oxidative stress, and facilitate the proliferation activity of HGFs and the potential of osteoblast differentiation, thus, better increasing the stability of implant osseointegration.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Titânio / Implantes Dentários / Magnésio / Antibacterianos / Antioxidantes Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Titânio / Implantes Dentários / Magnésio / Antibacterianos / Antioxidantes Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2022 Tipo de documento: Article