Your browser doesn't support javascript.
loading
Effects of activated sludge and UV disinfection processes on the bacterial community and antibiotic resistance profile in a municipal wastewater treatment plant.
Dias, Marcela França; Leroy-Freitas, Deborah; Machado, Elayne Cristina; da Silva Santos, Leticia; Leal, Cintia Dutra; da Rocha Fernandes, Gabriel; de Araújo, Juliana Calábria.
Afiliação
  • Dias MF; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil.
  • Leroy-Freitas D; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil.
  • Machado EC; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil.
  • da Silva Santos L; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil.
  • Leal CD; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil.
  • da Rocha Fernandes G; Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil.
  • de Araújo JC; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil. juliana@desa.ufmg.br.
Environ Sci Pollut Res Int ; 29(24): 36088-36099, 2022 May.
Article em En | MEDLINE | ID: mdl-35060061
ABSTRACT
Wastewater tertiary treatment has been pointed out as an effective alternative for reducing the concentration of antibiotic resistant bacteria and genes (ARB and ARGs) in wastewaters. The present work aimed to build on the current knowledge about the effects of activated sludge and UV irradiation on antibiotic resistance determinants in biologically treated wastewaters. For that, the microbial community and ARGs' composition of samples collected after preliminary (APT), secondary (AST), and tertiary (ATT) treatments in a full-scale wastewater treatment plant using a modified activated sludge (MAS) system followed by an UV stage (16 mJ/cm2) were investigated through culture-dependent and independent approaches (including metagenomics). A total of 24 phyla and 460 genera were identified, with predominance of Gammaproteobacteria in all samples. Pathogenic genera corresponded to 8.6% of all sequences on average, mainly Acinetobacter and Streptococcus. Significant differences (p < 0.05) in the proportion of pathogens were observed between APT and the other samples, suggesting that the secondary treatment reduced its abundance. The MAS achieved 64.0-99.7% average removal efficiency for total (THB) and resistant heterotrophic bacteria, although the proportions of ARB/THB have increased for sulfamethoxazole, cephalexin, ciprofloxacin, and tetracycline. A total of 107 copies/mL of intI1 gene remained in the final effluent, suggesting that the treatment did not significantly remove this gene and possibly other ARGs. In accordance, metagenomic results suggested that number of reads recruited to plasmid-associated ARGs became more abundant in the pool throughout the treatment, suggesting that it affected more the bacteria without these ARGs than those with it. In conclusion, disinfected effluents are still a potential source for ARB and ARGs, which highlights the importance to investigate ways to mitigate their release into the environment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esgotos / Purificação da Água Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esgotos / Purificação da Água Idioma: En Ano de publicação: 2022 Tipo de documento: Article