Your browser doesn't support javascript.
loading
LncRNA CEBPA-AS1 knockdown prevents neuronal apoptosis against oxygen glucose deprivation/reoxygenation by regulating the miR-455/GPER1 axis.
Peng, Jun; Yu, Zheng-Tao; Xiao, Rong-Jun; Wang, Qing-Song; Xia, Ying.
Afiliação
  • Peng J; Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China.
  • Yu ZT; Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China.
  • Xiao RJ; Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China.
  • Wang QS; Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China.
  • Xia Y; Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China. xiayingaa68@163.com.
Metab Brain Dis ; 37(3): 677-688, 2022 03.
Article em En | MEDLINE | ID: mdl-35088289
ABSTRACT
Ischemic stroke (IS) is a common nervous system disease, which is a major cause of disability and death in the world. In present study, we demonstrated a regulatory mechanism of CCAAT/enhancer binding protein-alpha antisense 1 (CEBPA-AS1) in oxygen glucose deprivation/reoxygenation (OGD/R)-induced SH-SY5Y cells, with a focus on neuronal apoptosis. CEBPA-AS1, miR-455, and GPER1 expressions were evaluated by using qRT-PCR and Western blotting. The binding relationship among CEBPA-AS1, miR-455, and GPER1 was determined by a dual luciferase reporter assay. Neuronal viability and apoptosis were examined using MTT and flow cytometry assays, followed by determination of apoptosis-related factors (caspase 3, caspase 8, caspase 9, Bax, and Bcl-2). CEBPA-AS1 and GPER1 levels were upregulated, and miR-455 level was downregulated in the cell model of OGD/R induced. CEBPA-AS1 knockdown increased SH-SY5Y viability and reduced OGD/R-induced apoptosis. CEBPA-AS1 could act as a sponge of miR-455, and CEBPA-AS1 knockdown was found to elevate miR-455 expression. miR-455 overexpression also promoted SH-SY5Y cell viability and rescued them from OGD/R-induced apoptosis by binding to GPER1. GPER1 overexpression or miR-455 inhibition reversed the anti-apoptotic effect of CEBPA-AS1 knockdown. These findings suggest a regulatory network of CEBPA-AS1/miR-455/GPER1 that mediates neuronal cell apoptosis in the OGD model, providing a better understanding of pathogenic mechanisms after IS.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: MicroRNAs / RNA Longo não Codificante Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: MicroRNAs / RNA Longo não Codificante Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article