Your browser doesn't support javascript.
loading
Optimizing the bio-degradability and biocompatibility of a biogenic collagen membrane through cross-linking and zinc-doped hydroxyapatite.
Wu, You; Chen, Shoucheng; Luo, Pu; Deng, Shudan; Shan, Zhengjie; Fang, Jinghan; Liu, Xingchen; Xie, Jiaxin; Liu, Runheng; Wu, Shiyu; Wu, Xiayi; Chen, Zetao; Yeung, Kelvin W K; Liu, Quan; Chen, Zhuofan.
Afiliação
  • Wu Y; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Chen S; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Luo P; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Deng S; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Shan Z; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Fang J; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
  • Liu X; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Xie J; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Liu R; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Wu S; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Wu X; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Chen Z; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China.
  • Yeung KWK; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
  • Liu Q; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China. Electronic address: liuq243@mail.sysu.edu.cn.
  • Chen Z; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China. Electronic address: chzhuof@mail.sysu.edu.cn.
Acta Biomater ; 143: 159-172, 2022 04 15.
Article em En | MEDLINE | ID: mdl-35149241
ABSTRACT
Biogenic collagen membranes have been widely used as soft tissue barriers in guided bone regeneration (GBR) and guided tissue regeneration (GTR). Nevertheless, their clinical performance remains unsatisfactory because of their low mechanical strength and fast degradation rate in vivo. Although cross-linking with chemical agents is effective and reliable for prolonging the degradation time of collagen membranes, some adverse effects including potential cytotoxicity and undesirable tissue integration have been observed during this process. As a fundamental nutritional trace element, zinc plays an active role in promoting the growth of cells and regulating the degradation of the collagen matrix. Herein, a biogenic collagen membrane was cross-linked with glutaraldehyde-alendronate to prolong its degradation time. The physiochemical and biological properties were enhanced by the incorporation of zinc-doped nanohydroxyapatite (nZnHA), with the native structure of collagen preserved. Specifically, the cross-linking combined with the incorporation of 1% and 2% nZnHA seemed to endow the membrane with the most appropriate biocompatibility and tissue integration capability among the cross-linked membranes, as well as offering a degradation period of six weeks in a rat subcutaneous model. Thus, improving the clinical performance of biogenic collagen membranes by cross-linking together with the incorporation of nZnHA is a promising strategy for the improvement of biogenic collagen membranes. STATEMENT OF

SIGNIFICANCE:

The significance of this research includes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zinco / Durapatita Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zinco / Durapatita Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article