Phytoene synthase 2 in tomato fruits remains functional and contributes to abscisic acid formation.
Plant Sci
; 316: 111177, 2022 Mar.
Article
em En
| MEDLINE
| ID: mdl-35151443
In ripening tomato fruits, the leaf-specific carotenoids biosynthesis mediated by phytoene synthase 2 (PSY2) is replaced by a fruit-specific pathway by the expression of two chromoplast-specific genes: phytoene synthase 1 (PSY1) and lycopene-ß-cyclase (CYCB). Though both PSY1 and PSY2 genes express in tomato fruits, the functional role of PSY2 is not known. To decipher whether PSY2-mediated carotenogenesis operates in ripening fruits, we blocked the in vivo activity of lycopene-ß-cyclases in fruits of several carotenoids and ripening mutants by CPTA (2-(4-Chlorophenylthio)triethylamine hydrochloride), an inhibitor of lycopene-ß-cyclases. The CPTA-treatment induced accumulation of lycopene in leaves, immature-green and ripening fruits. Even in psy1 mutants V7 and r that are deficient in fruit-specific carotenoid biosynthesis, CPTA triggered lycopene accumulation but lowered the abscisic acid level. Differing from fruit-specific carotenogenesis, CPTA-treated V7 and r mutant fruits accumulated lycopene but not phytoene and phytofluene. The lack of phytoene and phytofluene accumulation was reminiscent of PSY2-mediated leaf-like carotenogenesis, where phytoene and phytofluene accumulation is never seen. The lycopene accumulation was associated with the partial transformation of chloroplasts to chromoplasts bearing thread-like structures. Our study uncovers the operation of a parallel carotenogenesis pathway mediated by PSY2 that provides precursors for abscisic acid biosynthesis in ripening tomato fruits.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Solanum lycopersicum
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article