Your browser doesn't support javascript.
loading
Changes of Gut Microbiota by Natural mtDNA Variant Differences Augment Susceptibility to Metabolic Disease and Ageing.
Künstner, Axel; Schilf, Paul; Busch, Hauke; Ibrahim, Saleh M; Hirose, Misa.
Afiliação
  • Künstner A; Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany.
  • Schilf P; Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany.
  • Busch H; Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany.
  • Ibrahim SM; Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany.
  • Hirose M; Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article em En | MEDLINE | ID: mdl-35162979
ABSTRACT
We recently reported on two mouse strains carrying different single nucleotide variations in the mitochondrial complex I gene, i.e., B6-mtBPL mice carrying m.11902T>C and B6-mtALR carrying m.4738C>A. B6-mtBPL mice exhibited a longer lifespan and a lower metabolic disease susceptibility despite mild mitochondrial functional differences in steady-state. As natural polymorphisms in the mitochondrial DNA (mtDNA) are known to be associated with distinct patterns of gut microbial composition, we further investigated the gut microbiota composition in these mice strains. In line with mouse phenotypes, we found a significantly lower abundance of Proteobacteria, which is positively associated with pathological conditions, in B6-mtBPL compared to B6-mtALR mice. A prediction of functional profile of significantly differential bacterial genera between these strains revealed an involvement of glucose metabolism pathways. Whole transcriptome analysis of liver samples from B6-mtBPL and B6-mtALR mice confirmed these findings. Thus, both host gene expression and gut microbial changes caused by the mtDNA variant differences may contribute to the ageing and metabolic phenotypes observed in these mice strains. Since gut microbiota are easier to modulate, compared with mtDNA variants, identification of such mtDNA variants, specific gut bacterial species and bacterial metabolites may be a potential intervention to modulate common diseases, which are differentially susceptible to individuals with different mtDNA variants.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbioma Gastrointestinal / Doenças Metabólicas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbioma Gastrointestinal / Doenças Metabólicas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article