Your browser doesn't support javascript.
loading
Functional genomics elucidates regulatory mechanisms of Parkinson's disease-associated variants.
Chen, Rui; Liu, Jiewei; Li, Shiwu; Li, Xiaoyan; Huo, Yongxia; Yao, Yong-Gang; Xiao, Xiao; Li, Ming; Luo, Xiong-Jian.
Afiliação
  • Chen R; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
  • Liu J; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
  • Li S; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
  • Li X; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
  • Huo Y; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
  • Yao YG; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
  • Xiao X; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
  • Li M; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
  • Luo XJ; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
BMC Med ; 20(1): 68, 2022 02 16.
Article em En | MEDLINE | ID: mdl-35168626
ABSTRACT

BACKGROUND:

Genome-wide association studies (GWASs) have identified multiple risk loci for Parkinson's disease (PD). However, identifying the functional (or potential causal) variants in the reported risk loci and elucidating their roles in PD pathogenesis remain major challenges. To identify the potential causal (or functional) variants in the reported PD risk loci and to elucidate their regulatory mechanisms, we report a functional genomics study of PD.

METHODS:

We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) (from neuronal cells and human brain tissues) data and GWAS-identified single-nucleotide polymorphisms (SNPs) in PD risk loci. We then conducted a series of experiments and analyses to validate the regulatory effects of these (i.e., functional) SNPs, including reporter gene assays, allele-specific expression (ASE), transcription factor (TF) knockdown, CRISPR-Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis.

RESULTS:

We identified 44 SNPs (from 11 risk loci) affecting the binding of 12 TFs and we validated the regulatory effects of 15 TF binding-disrupting SNPs. In addition, we also identified the potential target genes regulated by these TF binding-disrupting SNPs through eQTL analysis. Finally, we showed that 4 eQTL genes of these TF binding-disrupting SNPs were dysregulated in PD cases compared with controls.

CONCLUSION:

Our study systematically reveals the gene regulatory mechanisms of PD risk variants (including widespread disruption of CTCF binding), generates the landscape of potential PD causal variants, and pinpoints promising candidate genes for further functional characterization and drug development.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Estudo de Associação Genômica Ampla Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Estudo de Associação Genômica Ampla Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article