Coordination and Hydroboration of Ru(II)-Borate Complexes: Dihydridoborate vs. Bis(dihydridoborate).
Chemistry
; 28(18): e202104393, 2022 Mar 28.
Article
em En
| MEDLINE
| ID: mdl-35171519
Treatment of [Cp*RuCl2 ]2 , 1, [(COD)IrCl]2 , 2 or [(p-cymene)RuCl2 ]2, 3 (Cp*=η5 -C5 Me5, COD= 1,5-cyclooctadiene and p-cymene=η6 -i PrC6 H4 Me) with heterocyclic borate ligands [Na[(H3 B)L], L1 and L2 (L1 : L=amt, L2 : L=mp; amt=2-amino-5-mercapto-1,3,4-thiadiazole, mp=2-mercaptopyridine) led to the formation of borate complexes having uncommon coordination. For example, complexes 1 and 2 on reaction with L1 and L2 afforded dihydridoborate species [LA M(µ-H)2 BHL] 4-6 (4: LA =Cp*, M=Ru, L=amt; 5: LA =Cp*, M=Ru, L=mp; 6: LA =COD, M=Ir, L=mp). On the other hand, treatment of 3 with L2 yielded cis- and trans-bis(dihydridoborate) species, [Ru{(µ-H)2 BH(mp)}2 ], cis-7 and trans-7. The isolation and structural characterization of fac- and mer-[Ru{(µ-H)2 BH(mp)}{(µ-H)BH(mp)2 }], 8 from the same reaction offered an insight into the behaviour of these dihydridoborate species in solution. Fascinatingly, despite having reduced natural charges on Ru centres both at cis-and trans-7, they underwent hydroboration reaction with alkynes that yielded both Markovnikov and anti-Markovnikov addition products, 10 a-d.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Boratos
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article