Your browser doesn't support javascript.
loading
Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats.
Meshram, Sonali; Verma, Vipin Kumar; Mutneja, Ekta; Sahu, Anil Kumar; Malik, Salma; Mishra, Prashant; Bhatia, Jagriti; Arya, Dharamvir S.
Afiliação
  • Meshram S; Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India.
  • Verma VK; Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India.
  • Mutneja E; Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India.
  • Sahu AK; Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India.
  • Malik S; Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India.
  • Mishra P; Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India.
  • Bhatia J; Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India.
  • Arya DS; Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India.
Br J Nutr ; : 1-14, 2022 Feb 18.
Article em En | MEDLINE | ID: mdl-35177130
ABSTRACT
Cardiac hypertrophy is the enlargement of cardiomyocytes in response to persistent release of catecholamine which further leads to cardiac fibrosis. Chrysin, flavonoid from honey, is well known for its multifarious properties like antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic. To investigate the cardioprotective potential of chrysin against isoproterenol (ISO), cardiac hypertrophy and fibrosis are induced in rats. Acclimatised male albino Wistar rats were divided into seven groups (n 6) normal (carboxymethyl cellulose at 0·5 % p.o.; as vehicle), hypertrophy control (ISO 3 mg/kg, s.c.), CHY15 + H, CHY30 + H & CHY60 + H (chrysin; p.o.15, 30 and 60 mg/kg respectively + ISO at 3 mg/kg, s.c.), CHY60 (chrysin 60 mg/kg in per se) and LST + H (losartan 10 mg/kg p.o. + ISO 3 mg/kg, s.c.) were treated for 28 d. After the dosing schedule on day 29, haemodynamic parameters were recorded, after that blood and heart were excised for biochemical, histological, ultra-structural and molecular evaluations. ISO administration significantly increases heart weightbody weight ratio, pro-oxidants, inflammatory and cardiac injury markers. Further, histopathological, ultra-structural and molecular studies confirmed deteriorative changes due to ISO administration. Pre-treatment with chrysin of 60 mg/kg reversed the ISO-induced damage to myocardium and prevent cardiac hypertrophy and fibrosis through various anti-inflammatory, anti-apoptotic, antioxidant and anti-fibrotic pathways. Data demonstrated that chrysin attenuated myocardial hypertrophy and prevented fibrosis via activation of transforming growth factor-beta (TGF-ß)/Smad signalling pathway.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article