Out-of-Equilibrium Self-Replication Allows Selection for Dynamic Kinetic Stability in a System of Competing Replicators.
Angew Chem Int Ed Engl
; 61(18): e202117605, 2022 04 25.
Article
em En
| MEDLINE
| ID: mdl-35179808
Among the key characteristics of living systems are their ability to self-replicate and the fact that they exist in an open system away from equilibrium. Herein, we show how the outcome of the competition between two self-replicators, differing in size and building block composition, is different depending on whether the experiments are conducted in a closed vial or in an open and out-of-equilibrium replication-destruction regime. In the closed system, the slower replicator eventually prevails over the faster competitor. In a replication-destruction regime, implemented through a flow system, the outcome of the competition is reversed and the faster replicator dominates. The interpretation of the experimental observations is supported by a mass-action-kinetics model. These results represent one of the few experimental manifestations of selection among competing self-replicators based on dynamic kinetic stability and pave the way towards Darwinian evolution of abiotic systems.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Cinética
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article