Your browser doesn't support javascript.
loading
Deep Learning Approach to Automatize TMTV Calculations Regardless of Segmentation Methodology for Major FDG-Avid Lymphomas.
Revailler, Wendy; Cottereau, Anne Ségolène; Rossi, Cedric; Noyelle, Rudy; Trouillard, Thomas; Morschhauser, Franck; Casasnovas, Olivier; Thieblemont, Catherine; Gouill, Steven Le; André, Marc; Ghesquieres, Herve; Ricci, Romain; Meignan, Michel; Kanoun, Salim.
Afiliação
  • Revailler W; Centre de Recherche Clinique de Toulouse, Team 9, 31100 Toulouse, France.
  • Cottereau AS; Institut Universitaire du Cancer de Toulouse, Institut Claudius Regaud, Nuclear Medicine, 1 Avenue Joliot Curie, 31000 Toulouse, France.
  • Rossi C; Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Nuclear Medecine, René Descartes University, 75014 Paris, France.
  • Noyelle R; CHU Dijon, Hematology, 10 Boulevard Maréchal De Lattre De Tassigny, 21000 Dijon, France.
  • Trouillard T; Thales Services, 31400 Toulouse, France.
  • Morschhauser F; Centre de Recherche Clinique de Toulouse, Team 9, 31100 Toulouse, France.
  • Casasnovas O; Institut Universitaire du Cancer de Toulouse, Institut Claudius Regaud, Nuclear Medicine, 1 Avenue Joliot Curie, 31000 Toulouse, France.
  • Thieblemont C; ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, 59000 Lille, France.
  • Gouill SL; CHU Dijon, Hematology, 10 Boulevard Maréchal De Lattre De Tassigny, 21000 Dijon, France.
  • André M; Hemato-Oncology Unit, Saint-Louis University Hospital Center, Public Hospital Network of Paris, 75010 Paris, France.
  • Ghesquieres H; Department of Hematology, Nantes University Hospital, INSERM CRCINA Nantes-Angers, NeXT Université de Nantes, 44000 Nantes, France.
  • Ricci R; Department of Hematology, Université catholique de Louvain, CHU UcL Namur, 5530 Yvoir, Belgium.
  • Meignan M; Department of Hematology, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France.
  • Kanoun S; LYSARC, Centre Hospitalier Lyon-Sud, 165 Chemin du Grand Revoyet Bâtiment 2D, 69310 Pierre-Bénite, France.
Diagnostics (Basel) ; 12(2)2022 Feb 06.
Article em En | MEDLINE | ID: mdl-35204515
The total metabolic tumor volume (TMTV) is a new prognostic factor in lymphomas that could benefit from automation with deep learning convolutional neural networks (CNN). Manual TMTV segmentations of 1218 baseline 18FDG-PET/CT have been used for training. A 3D V-NET model has been trained to generate segmentations with soft dice loss. Ground truth segmentation has been generated using a combination of different thresholds (TMTVprob), applied to the manual region of interest (Otsu, relative 41% and SUV 2.5 and 4 cutoffs). In total, 407 and 405 PET/CT were used for test and validation datasets, respectively. The training was completed in 93 h. In comparison with the TMTVprob, mean dice reached 0.84 in the training set, 0.84 in the validation set and 0.76 in the test set. The median dice scores for each TMTV methodology were 0.77, 0.70 and 0.90 for 41%, 2.5 and 4 cutoff, respectively. Differences in the median TMTV between manual and predicted TMTV were 32, 147 and 5 mL. Spearman's correlations between manual and predicted TMTV were 0.92, 0.95 and 0.98. This generic deep learning model to compute TMTV in lymphomas can drastically reduce computation time of TMTV.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article