Correlation of Solubility Thermodynamics of Glibenclamide with Recrystallization and In Vitro Release Profile.
Molecules
; 27(4)2022 Feb 18.
Article
em En
| MEDLINE
| ID: mdl-35209181
The solubility of glibenclamide was evaluated in DMSO, NMP, 1,4-dioxane, PEG 400, Transcutol® HP, water, and aqueous mixtures (T = 293.15~323.15 K). It was then recrystallized to solvate and compressed into tablets, of which 30-day stability and dissolution was studied. It had a higher solubility in 1,4-dioxane, DMSO, NMP (Xexp = 2.30 × 103, 3.08 × 104, 2.90 × 104) at 323.15 K, its mixture (Xexp = 1.93 × 103, 1.89 × 104, 1.58 × 104) at 298.15 K, and 1,4-dioxane (w) + water (1-w) mixture ratio of w = 0.8 (Xexp = 3.74 × 103) at 323.15 K. Modified Apelblat (RMSD ≤ 0.519) and CNIBS/R-K model (RMSD ≤ 0.358) suggested good comparability with the experimental solubility. The minimum value of ΔG° vs ΔH° at 0.70 < x2 < 0.80 suggested higher solubility at that molar concentration. Based on the solubility, it was recrystallized into the solvate, which was granulated and compressed into tablets. Among the studied solvates, the tablets of glibenclamide dioxane solvate had a higher initial (95.51%) and 30-day (93.74%) dissolution compared to glibenclamide reference (28.93%). There was no stability issue even after granulation, drying, or at pH 7.4. Thus, glibenclamide dioxane solvate could be an alternative form to improve the molecule's properties.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Termodinâmica
/
Glibureto
/
Liberação Controlada de Fármacos
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article