Your browser doesn't support javascript.
loading
Ultrafast visualization of incipient plasticity in dynamically compressed matter.
Mo, Mianzhen; Tang, Minxue; Chen, Zhijiang; Peterson, J Ryan; Shen, Xiaozhe; Baldwin, John Kevin; Frost, Mungo; Kozina, Mike; Reid, Alexander; Wang, Yongqiang; E, Juncheng; Descamps, Adrien; Ofori-Okai, Benjamin K; Li, Renkai; Luo, Sheng-Nian; Wang, Xijie; Glenzer, Siegfried.
Afiliação
  • Mo M; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. mmo09@slac.stanford.edu.
  • Tang M; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.
  • Chen Z; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Peterson JR; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Shen X; Physics Department, Stanford University, Stanford, CA, 94305, USA.
  • Baldwin JK; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Frost M; Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Kozina M; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Reid A; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Wang Y; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • E J; Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Descamps A; Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Ofori-Okai BK; European XFEL GmbH, 22869, Schenefeld, Germany.
  • Li R; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Luo SN; Aeronautics and Astronautics Department, Stanford University, Stanford, CA, 94305, USA.
  • Wang X; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Glenzer S; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Nat Commun ; 13(1): 1055, 2022 Feb 25.
Article em En | MEDLINE | ID: mdl-35217665
ABSTRACT
Plasticity is ubiquitous and plays a critical role in material deformation and damage; it inherently involves the atomistic length scale and picosecond time scale. A fundamental understanding of the elastic-plastic deformation transition, in particular, incipient plasticity, has been a grand challenge in high-pressure and high-strain-rate environments, impeded largely by experimental limitations on spatial and temporal resolution. Here, we report femtosecond MeV electron diffraction measurements visualizing the three-dimensional (3D) response of single-crystal aluminum to the ultrafast laser-induced compression. We capture lattice transitioning from a purely elastic to a plastically relaxed state within 5 ps, after reaching an elastic limit of ~25 GPa. Our results allow the direct determination of dislocation nucleation and transport that constitute the underlying defect kinetics of incipient plasticity. Large-scale molecular dynamics simulations show good agreement with the experiment and provide an atomic-level description of the dislocation-mediated plasticity.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article