Your browser doesn't support javascript.
loading
Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress.
Bonagas, Nadilly; Gustafsson, Nina M S; Henriksson, Martin; Marttila, Petra; Gustafsson, Robert; Wiita, Elisée; Borhade, Sanjay; Green, Alanna C; Vallin, Karl S A; Sarno, Antonio; Svensson, Richard; Göktürk, Camilla; Pham, Therese; Jemth, Ann-Sofie; Loseva, Olga; Cookson, Victoria; Kiweler, Nicole; Sandberg, Lars; Rasti, Azita; Unterlass, Judith E; Haraldsson, Martin; Andersson, Yasmin; Scaletti, Emma R; Bengtsson, Christoffer; Paulin, Cynthia B J; Sanjiv, Kumar; Abdurakhmanov, Eldar; Pudelko, Linda; Kunz, Ben; Desroses, Matthieu; Iliev, Petar; Färnegårdh, Katarina; Krämer, Andreas; Garg, Neeraj; Michel, Maurice; Häggblad, Sara; Jarvius, Malin; Kalderén, Christina; Jensen, Amanda Bögedahl; Almlöf, Ingrid; Karsten, Stella; Zhang, Si Min; Häggblad, Maria; Eriksson, Anders; Liu, Jianping; Glinghammar, Björn; Nekhotiaeva, Natalia; Klingegård, Fredrik; Koolmeister, Tobias; Martens, Ulf.
Afiliação
  • Bonagas N; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Gustafsson NMS; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Henriksson M; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Marttila P; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Gustafsson R; Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden.
  • Wiita E; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Borhade S; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Green AC; Weston Park Cancer Centre, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
  • Vallin KSA; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Sarno A; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
  • Svensson R; Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
  • Göktürk C; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Pham T; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Jemth AS; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Loseva O; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Cookson V; Weston Park Cancer Centre, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
  • Kiweler N; Cancer Metabolism Group, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.
  • Sandberg L; Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden.
  • Rasti A; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Unterlass JE; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Haraldsson M; Drug Discovery and Development Platform, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.
  • Andersson Y; Drug Discovery and Development Platform, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Solna, Sweden.
  • Scaletti ER; Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden.
  • Bengtsson C; Department of Experimental Medical Science, Lund University, Lund, Sweden.
  • Paulin CBJ; Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden.
  • Sanjiv K; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Abdurakhmanov E; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Pudelko L; Drug Discovery and Development Platform, Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
  • Kunz B; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Desroses M; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Iliev P; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Färnegårdh K; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Krämer A; Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden.
  • Garg N; Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.
  • Michel M; Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
  • Häggblad S; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Jarvius M; Biochemical and Cellular Screening Facility, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
  • Kalderén C; Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.
  • Jensen AB; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Almlöf I; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Karsten S; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Zhang SM; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Häggblad M; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
  • Eriksson A; Biochemical and Cellular Screening Facility, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
  • Liu J; Karolinska High Throughput Centre, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
  • Glinghammar B; Karolinska High Throughput Centre, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
  • Nekhotiaeva N; Drug Discovery and Development Platform, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.
  • Klingegård F; Karolinska High Throughput Centre, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
  • Koolmeister T; Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden.
  • Martens U; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
Nat Cancer ; 3(2): 156-172, 2022 02.
Article em En | MEDLINE | ID: mdl-35228749
ABSTRACT
The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Aminoidrolases Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Aminoidrolases Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article