Your browser doesn't support javascript.
loading
Armet from whitefly saliva acts as an effector to suppress plant defences by targeting tobacco cystatin.
Du, Hui; Xu, Hong-Xing; Wang, Fang; Qian, Li-Xin; Liu, Shu-Sheng; Wang, Xiao-Wei.
Afiliação
  • Du H; State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
  • Xu HX; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
  • Wang F; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
  • Qian LX; Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
  • Liu SS; Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
  • Wang XW; Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
New Phytol ; 234(5): 1848-1862, 2022 06.
Article em En | MEDLINE | ID: mdl-35238409
ABSTRACT
Arginine rich, mutated in early stage of tumours (Armet), is a well-characterized bifunctional protein as an unfolded protein response component intracellularly and a neurotrophic factor extracellularly in mammals. Recently, a new role of Armet as an effector protein mediating insect-plant interactions has been reported; however, its molecular mechanisms underlying the regulation of plant defences remain unclear. We investigated the molecular mechanisms underlying whitefly-secreted Armet-mediated regulation of insect-plant interaction by agrobacterium-mediated transient expression, RNA interference, electrical penetration graph, protein-protein interaction studies, virus-induced gene silencing assay, phytohormone analysis and whitefly bioassays. Armet, secreted by Bemisia tabaci whitefly, is highly expressed in the primary salivary gland and is delivered into tobacco plants during feeding. Overexpression of the BtArmet gene in tobacco enhanced whitefly performance, while silencing the BtArmet gene in whitefly interrupted whitefly feeding and suppressed whitefly performance on tobacco plants. BtArmet was shown to interact with NtCYS6, a cystatin protein essential for tobacco anti-whitefly resistance, and counteract the negative effects of NtCYS6 on whitefly. These results indicate that BtArmet is a salivary effector and acts to promote whitefly performance on tobacco plants through binding to the tobacco cystatin NtCYS6. Our findings provide novel insight into whitefly-plant interactions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cistatinas / Hemípteros / Neoplasias Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cistatinas / Hemípteros / Neoplasias Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article