Cytomorphic Electronic Systems: A review and perspective.
IEEE Nanotechnol Mag
; 15(6): 41-53, 2021 Dec.
Article
em En
| MEDLINE
| ID: mdl-35242267
Boltzmann-exponential thermodynamic laws govern noisy molecular flux in chemical reactions as well as noisy subthreshold electron current flux in transistors. These common mathematical laws enable one to map and simulate arbitrary stochastic biochemical reaction networks in highly efficient cytomorphic systems built on subthreshold analog circuits. Such simulations can accurately model noisy, nonlinear, asynchronous, stiff, and non-modular feedback dynamics in interconnected networks in the physical circuits, automatically. The scaling in simulation time for stochastic networks with the number of reactions or molecules is constant in cytomorphic systems. In contrast, it grows rapidly in digital systems, which are not parallelizable. Therefore, cytomorphic systems enable large-scale supercomputing systems-biology simulations of arbitrary and highly computationally intensive biochemical reaction networks that can nevertheless be compiled to them via digitally programmable parameters and connectivity. We outline how cytomorphic systems can be utilized for rapid drug-cocktail formulation and discovery in future pandemics like COVID-19; can simulate networks important in cancer; and can help automate the design of synthetic biological circuits, e.g. a synthetic biological operational amplifier for robust and precise drug delivery. Thus, just as neuromorphic systems have enabled multiple applications in A.I., cytomorphic systems will enable multiple applications in biology and medicine.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article