Your browser doesn't support javascript.
loading
Per-, poly-fluoroalkyl substances (PFASs) and planktonic microbiomes: Identification of biotic and abiotic regulations in community coalescence and food webs.
Wu, Jian-Yi; Hua, Zu-Lin; Gu, Li.
Afiliação
  • Wu JY; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
  • Hua ZL; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
  • Gu L; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China. Electronic address: guli_hhu@163.com.
Environ Pollut ; 302: 119078, 2022 Jun 01.
Article em En | MEDLINE | ID: mdl-35245616
The importance of per-, poly-fluoroalkyl substances (PFASs) effects on riverine microbiomes is receiving increased recognition in the environmental sciences. However, few studies have explored how PFASs affect microbiomes across trophic levels, specifically through predator-prey interactions. This study examined the community profiles of planktonic archaea, bacteria, fungi, algae, protozoa, and metazoa in a semi-industrial and agricultural river alongside their interactions with 15 detected PFASs. As abiotic factors, PFASs affected community coalescence more than biogenic substances (p < 0.05). For biotic regulations, sub-communities in rare biospheres (including always rare taxa-ART and critically rare taxa-CRT) contributed to spatial community coalescence more than sub-communities in abundant biospheres (always abundant taxa-AAT and critically abundant taxa-CAT) (p < 0.05). Metazoa-bacteria (Modularity = 1.971) and protozoa-fungi (1.723) were determined to be the most stable predator-prey networks. Based on pathway models, short-chain PFBA (C4) was shown to weaken the trophic transfer efficiencies from heterotrophic bacteria (HB) to heterotrophic flagellates (HF) (p < 0.05). Long-chain PFTeDA (C14) promoted HB to amoeba (p < 0.05), which we postulate is the pathway for PFTeDA to enter the microbial food chain. Our preliminary results elucidated the influence of PFASs on planktonic microbial food webs and highlighted the need to consider protecting and remediating riverine ecosystems containing PFASs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microbiota / Fluorocarbonos Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microbiota / Fluorocarbonos Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article