Your browser doesn't support javascript.
loading
A label-free cyclic amplification strategy for microRNA detection by coupling graphene oxide-controlled adsorption with superlong poly(thymine)-hosted fluorescent copper nanoparticles.
Xu, Fengzhou; Qiao, Zhenzhen; Luo, Lan; He, Xiaoxiao; Lei, Yanli; Tang, Jinlu; Shi, Hui; Wang, Kemin.
Afiliação
  • Xu F; Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian,
  • Qiao Z; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
  • Luo L; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
  • He X; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
  • Lei Y; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
  • Tang J; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
  • Shi H; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China. Electronic address: huishi_2009@hnu.edu.cn.
  • Wang K; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China. Electronic address: kmwang@hnu.edu.cn.
Talanta ; 243: 123323, 2022 Jun 01.
Article em En | MEDLINE | ID: mdl-35247818
Herein, based on a terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly-T-templated-copper nanoparticles (poly T-CuNPs) strategy, a simple, universal and label-free fluorescent biosensor for the detection of miRNA was constructed by employing graphene oxide (GO) and DNase I. In this strategy, GO and DNase I were used as a switch and amplifier of the signal generation pathway, respectively, and the fluorescence of poly T-CuNPs was used as the signal output. In the presence of target miRNA, the DNA dissociated from the GO surface by forming a miRNA/DNA duplex and was degraded by DNase I. The short oligos with 3'-OH, the product of DNase I degradation, could be recognized by the TdT and added to a long poly-T tail. Finally, the fluorescence signal was output through the synthesis of poly T-CuNPs. As a proof of concept, let-7a was analyzed. The method showed good sensitivity and selectivity with a linear response in the 50 pM-10,000 pM let-7a concentration range and a 30 pM limit of detection (LOD = 30 pM, R2 = 0.9954, the relative standard deviation were 2.79%-5.30%). It was also successfully applied to the determination of miRNA in spiked human serum samples. It showed good linearity in the range of 500-10000 pM (R2 = 0.9969, the relative standard deviation were 1.61%-3.85%). Moreover, both the adsorption of GO and the degradation of DNase I are DNA sequence-independent; thus, this method can be applied to the detection of any miRNA simply by changing the assisted-DNA sequence.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / MicroRNAs / Nanopartículas Metálicas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / MicroRNAs / Nanopartículas Metálicas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article