Your browser doesn't support javascript.
loading
Langmuir-Based Modeling Produces Steady Two-Dimensional Simulations of Capacitive Deionization via Relaxed Adsorption-Flow Coupling.
Nordstrand, Johan; Dutta, Joydeep.
Afiliação
  • Nordstrand J; Functional Materials Group, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden.
  • Dutta J; Functional Materials Group, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden.
Langmuir ; 38(11): 3350-3359, 2022 Mar 22.
Article em En | MEDLINE | ID: mdl-35257585
ABSTRACT
The growing world population creates an ever-increasing demand for fresh drinkable water, and many researchers have discovered the emerging capacitive deionization (CDI) technique to be highly promising for desalination. Traditional modeling of CDI has focused on charge storage in electrical double layers, but recent studies have presented a dynamic Langmuir (DL) approach as a simple and stable alternative. We here demonstrate, for the first time, that a Langmuir-based approach can simulate CDI in multiple dimensions. This provides a new perspective of different physical pictures that could be used to describe the detailed CDI processes. As CDI emerges, effective modeling of large-scale and pilot CDI modules is becoming increasingly important, but such a modeling could also be especially complex. Leveraging the stability of the DL model, we propose an alternative fundamental approach based on relaxed adsorption-flow computations that can dissolve these complexity barriers. Literature data extensively validate the findings, which show how the Langmuir-based approach can simulate and predict how key changes in operational and structural conditions affect the CDI performance. Crucially, the method is tractable for simple simulations of large-scale and structurally complex systems. Put together, this work presents new avenues for approaching the challenges in modeling CDI.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article