Your browser doesn't support javascript.
loading
Solvation and Hydrolysis Reaction of Isocyanic Acid at the Air-Water Interface: A Computational Study.
Zhong, Jie; Li, Liwen; Kumar, Manoj; Zeng, Xiao Cheng; Zhang, Jun; Francisco, Joseph S.
Afiliação
  • Zhong J; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
  • Li L; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
  • Kumar M; Department of Chemistry, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States.
  • Zeng XC; Department of Chemistry, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States.
  • Zhang J; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
  • Francisco JS; Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States.
J Am Chem Soc ; 144(12): 5315-5322, 2022 03 30.
Article em En | MEDLINE | ID: mdl-35290046
Isocyanic acid (HNCO) is known to be inert to strong oxidants and photolysis in the atmosphere but often appears in different forms of smoke; therefore, it is linked to various smoke-related illnesses due to tobacco usage or wildfire events. To date, the major loss pathway of HNCO is believed to be through its uptake on aerosol droplets. However, the molecular mechanisms underlying such an uptake process are still incompletely understood. Herein, we use the Born-Oppenheimer molecular dynamics (BOMD) simulations to study solvation and hydrolysis reactions of HNCO on water droplets at ambient temperature. The BOMD simulations indicate that the scavenging of HNCO by water droplets is largely attributed to the preferential adsorption of HNCO at the air-water interface, rather than inside bulk water. Specifically, the H atom of HNCO interacts with the O atom of interfacial water, leading to the formation of a hydrogen bond (H-bond) of (HNCO)H···O(H2O), which prevents HNCO from evaporating. Moreover, the interfacial water can act as H-bond acceptors/donors to promote the proton transfer during the HNCO hydrolysis reaction. Compared to the gas phase, the activation barrier is lowered from 45 to 14 kcal·mol-1 on the water surface, which facilitates the formation of the key intermediate of NH2COOH. This intermediate eventually decomposes into NH3 and CO2, consistent with the previous study [ Atmos. Chem. Phys. 2016, 16, 703-714]. The new molecular insight into HNCO solvation and reaction on the water surface improves our understanding of the uptake of HNCO on aerosols.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água / Cianatos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água / Cianatos Idioma: En Ano de publicação: 2022 Tipo de documento: Article