Your browser doesn't support javascript.
loading
Context-dependent integrated stress resistance promotes a global invasive pest.
Tarusikirwa, Vimbai L; Cuthbert, Ross N; Mutamiswa, Reyard; Nyamukondiwa, Casper.
Afiliação
  • Tarusikirwa VL; Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.
  • Cuthbert RN; GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany.
  • Mutamiswa R; School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.
  • Nyamukondiwa C; Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa.
Insect Sci ; 29(6): 1790-1804, 2022 Dec.
Article em En | MEDLINE | ID: mdl-35290720
ABSTRACT
In nature, insects concurrently face multiple environmental stressors, a scenario likely increasing with climate change. Integrated stress resistance (ISR) thus often improves fitness and could drive invasiveness, but how physiological mechanisms influence invasion has lacked examination. Here, we investigated cross-tolerance to abiotic stress factors which may influence range limits in the South American tomato pinworm-a global invader that is an ecologically and socially damaging crop pest. Specifically, we tested the effects of prior rapid cold- and heat-hardening (RCH and RHH), fasting, and desiccation on cold and heat tolerance traits, as well as starvation and desiccation survivability between T. absoluta life stages. Acclimation effects on critical thermal minima (CTmin ) and maxima (CTmax ) were inconsistent, showing significantly deleterious effects of RCH on adult CTmax and CTmin and, conversely, beneficial acclimation effects of RCH on larval CTmin . While no beneficial effects of desiccation acclimation were recorded for desiccation tolerance, fasted individuals had significantly higher survival in adults, whereas fasting negatively affected larval tolerances. Furthermore, fasted and desiccation acclimated adults had significantly higher starvation tolerance, showing strong evidence for cross-tolerance. Our results show context-dependent ISR traits that may promote T. absoluta fitness and competitiveness. Given the frequent overlapping occurrence of these divergent stressors, ISR reported here may thus partly elucidate the observed rapid global spread of T. absoluta into more stressful environments than expected. This information is vital in determining the underpinnings of multistressor responses, which are fundamental in forecasting species responses to changing environments and management responses.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inanição / Termotolerância Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inanição / Termotolerância Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article