Your browser doesn't support javascript.
loading
Electrochemical properties of a lithium-impregnated metal foam anode (LIMFA FeCrAl) for molten salt thermal batteries.
Choi, Yusong; Ahn, Tae-Young; Ha, Sang-Hyeon; Lee, Jae-In; Cho, Jang-Hyeon.
Afiliação
  • Choi Y; Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon, 34186, Republic of Korea. richpine87@gmail.com.
  • Ahn TY; Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon, 34186, Republic of Korea.
  • Ha SH; Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon, 34186, Republic of Korea.
  • Lee JI; Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon, 34186, Republic of Korea.
  • Cho JH; Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon, 34186, Republic of Korea.
Sci Rep ; 12(1): 4474, 2022 Mar 16.
Article em En | MEDLINE | ID: mdl-35297402
ABSTRACT
Although numerous cathode materials with excellent properties have been developed for use in molten salt thermal batteries, similar progress is yet to be made with anode materials. Herein, a high-performance lithium-impregnated metal foam anode (LIMFA) is fabricated by impregnating molten lithium into a gold-coated iron-chrome-aluminium (FeCrAl) foam at 400 °C. A test cell employing the LIMFA FeCrAl anode exhibited a specific capacity of 2627 As g-1. For comparison, a cell with a conventional Li(Si) anode was also discharged, demonstrating a specific capacity of 982 As g-1. This significant improvement in performance can be attributed to the large amount (18 wt%) of lithium incorporated into the FeCrAl foam and the ability of the FeCrAl foam to absorb and immobilize molten lithium without adopting a cup system. For thermal batteries without a cup, the LIMFA FeCrAl provides the highest-reported specific capacity and a flat discharge voltage curve of molten lithium. After cell discharge, the FeCrAl foam exhibited no lithium leakage, surface damage, or structural collapse. Given these advantageous properties, in addition to its high specific capacity, LIMFA FeCrAl is expected to aid the development of thermal batteries with enhanced performance.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article