Your browser doesn't support javascript.
loading
A regulator of G protein signaling 5 marked subpopulation of vascular smooth muscle cells is lost during vascular disease.
Gao, Ya-Kun; Guo, Rui-Juan; Xu, Xin; Huang, Xiao-Fu; Song, Yu; Zhang, Dan-Dan; Chen, Ning; Wang, Xiao-Wei; Liang, Chen-Xi; Kong, Peng; Han, Mei.
Afiliação
  • Gao YK; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
  • Guo RJ; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
  • Xu X; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
  • Huang XF; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
  • Song Y; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
  • Zhang DD; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
  • Chen N; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
  • Wang XW; Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China.
  • Liang CX; Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China.
  • Kong P; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
  • Han M; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
PLoS One ; 17(3): e0265132, 2022.
Article em En | MEDLINE | ID: mdl-35320283
Vascular smooth muscle cell (VSMC) subpopulations relevant to vascular disease and injury repair have been depicted in healthy vessels and atherosclerosis profiles. However, whether VSMC subpopulation associated with vascular homeostasis exists in the healthy artery and how are their nature and fate in vascular remodeling remains elusive. Here, using single-cell RNA-sequencing (scRNA-seq) to detect VSMC functional heterogeneity in an unbiased manner, we showed that VSMC subpopulations in healthy artery presented transcriptome diversity and that there was significant heterogeneity in differentiation state and development within each subpopulation. Notably, we detected an independent subpopulation of VSMCs that highly expressed regulator of G protein signaling 5 (RGS5), upregulated the genes associated with inhibition of cell proliferation and construction of cytoskeleton compared with the general subpopulation, and mainly enriched in descending aorta. Additionally, the proportion of RGS5high VSMCs was markedly decreased or almost disappeared in the vascular tissues of neointimal formation, abdominal aortic aneurysm and atherosclerosis. Specific spatiotemporal characterization of RGS5high VSMC subpopulation suggested that this subpopulation was implicated in vascular homeostasis. Together, our analyses identify homeostasis-relevant transcriptional signatures of VSMC subpopulations in healthy artery, which may explain the regional vascular resistance to atherosclerosis at some extent.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas RGS / Aterosclerose / Músculo Liso Vascular Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas RGS / Aterosclerose / Músculo Liso Vascular Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article