Your browser doesn't support javascript.
loading
Network dynamics scale with levels of awareness.
Coppola, Peter; Spindler, Lennart R B; Luppi, Andrea I; Adapa, Ram; Naci, Lorina; Allanson, Judith; Finoia, Paola; Williams, Guy B; Pickard, John D; Owen, Adrian M; Menon, David K; Stamatakis, Emmanuel A.
Afiliação
  • Coppola P; Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK.
  • Spindler LRB; Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK.
  • Luppi AI; Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK.
  • Adapa R; Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK.
  • Naci L; Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Lloyd Building, Dublin 2, Ireland.
  • Allanson J; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Neurosciences, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Hills Rd., Cambridge, CB2 0QQ, UK.
  • Finoia P; Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK.
  • Williams GB; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, UK.
  • Pickard JD; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brai
  • Owen AM; The Brain and Mind Institute, Western Interdisciplinary Research Building, University of Western Ontario, London, ON N6A 5B7, Canada.
  • Menon DK; Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, UK.
  • Stamatakis EA; Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK. Electronic ad
Neuroimage ; 254: 119128, 2022 07 01.
Article em En | MEDLINE | ID: mdl-35331869
Small world topologies are thought to provide a valuable insight into human brain organisation and consciousness. However, functional magnetic resonance imaging studies in consciousness have not yielded consistent results. Given the importance of dynamics for both consciousness and cognition, here we investigate how the diversity of small world dynamics (quantified by sample entropy; dSW-E1) scales with decreasing levels of awareness (i.e., sedation and disorders of consciousness). Paying particular attention to result reproducibility, we show that dSW-E is a consistent predictor of levels of awareness even when controlling for the underlying functional connectivity dynamics. We find that dSW-E of subcortical, and cortical areas are predictive, with the former showing higher and more robust effect sizes across analyses. We find that the network dynamics of intermodular communication in the cerebellum also have unique predictive power for levels of awareness. Consequently, we propose that the dynamic reorganisation of the functional information architecture, in particular of the subcortex, is a characteristic that emerges with awareness and has explanatory power beyond that of the complexity of dynamic functional connectivity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estado de Consciência / Rede Nervosa Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estado de Consciência / Rede Nervosa Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article