Your browser doesn't support javascript.
loading
Neural Differentiation of Human-Induced Pluripotent Stem Cells (hiPSc) on Surface-Modified Nanofibrous Scaffolds Coated with Platelet-Rich Plasma.
Moazamiyanfar, Reza; Halabian, Raheleh; Ghollasi, Marzieh; Poormoghadam, Delaram; Entezari, Maliheh; Endorami, Seyed Ehsan.
Afiliação
  • Moazamiyanfar R; Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran.
  • Halabian R; Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  • Ghollasi M; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran. ghollasi@khu.ac.ir.
  • Poormoghadam D; Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
  • Entezari M; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
  • Endorami SE; Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Neurochem Res ; 47(7): 1991-2001, 2022 Jul.
Article em En | MEDLINE | ID: mdl-35359243
ABSTRACT
The field of tissue engineering exploits living cells in a variety of ways to restore, maintain, or enhance tissues and organs. Between stem cells, human induced pluripotent stem cells (hiPSCs), are very important due to their wide abilities. Growth factors can support proliferation, differentiation, and migration of hiPSCs. Platelet-rich plasma (PRP) could be used as the source of growth factors for hiPSCs. In the present study, proliferation and neural differentiation of hiPSCs on surface-modified nanofibrous Poly-L-lactic acid (PLLA) coated with platelet-rich plasma was investigated. The results of in vitro analysis showed that on the surface, which was modified nanofibrous scaffolds coated with platelet-rich plasma, significantly enhanced hiPSCs proliferation and neural differentiation were observed. Whereas the MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide]) results showed biocompatibility of surface-modified nanofibrous scaffolds coated with platelet-rich plasma and the usage of these modified nanoscaffolds in neural tissue engineering in vivo is promising for the future.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plasma Rico em Plaquetas / Células-Tronco Pluripotentes Induzidas / Nanofibras Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plasma Rico em Plaquetas / Células-Tronco Pluripotentes Induzidas / Nanofibras Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article