Your browser doesn't support javascript.
loading
Search for Neutrino-Induced Neutral-Current Δ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess under a Single-Photon Hypothesis.
Abratenko, P; An, R; Anthony, J; Arellano, L; Asaadi, J; Ashkenazi, A; Balasubramanian, S; Baller, B; Barnes, C; Barr, G; Basque, V; Bathe-Peters, L; Benevides Rodrigues, O; Berkman, S; Bhanderi, A; Bhat, A; Bishai, M; Blake, A; Bolton, T; Book, J Y; Camilleri, L; Caratelli, D; Caro Terrazas, I; Castillo Fernandez, R; Cavanna, F; Cerati, G; Chen, Y; Cianci, D; Conrad, J M; Convery, M; Cooper-Troendle, L; Crespo-Anadón, J I; Del Tutto, M; Dennis, S R; Detje, P; Devitt, A; Diurba, R; Dorrill, R; Duffy, K; Dytman, S; Eberly, B; Ereditato, A; Evans, J J; Fine, R; Fiorentini Aguirre, G A; Fitzpatrick, R S; Fleming, B T; Foppiani, N; Franco, D; Furmanski, A P.
Afiliação
  • Abratenko P; Tufts University, Medford, Massachusetts 02155, USA.
  • An R; Illinois Institute of Technology (IIT), Chicago, Illinois 60616, USA.
  • Anthony J; University of Cambridge, Cambridge CB3 0HE, United Kingdom.
  • Arellano L; The University of Manchester, Manchester M13 9PL, United Kingdom.
  • Asaadi J; University of Texas, Arlington, Texas 76019, USA.
  • Ashkenazi A; Tel Aviv University, Tel Aviv 69978, Israel.
  • Balasubramanian S; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Baller B; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Barnes C; University of Michigan, Ann Arbor, Michigan 48109, USA.
  • Barr G; University of Oxford, Oxford OX1 3RH, United Kingdom.
  • Basque V; The University of Manchester, Manchester M13 9PL, United Kingdom.
  • Bathe-Peters L; Harvard University, Cambridge, Massachusetts 02138, USA.
  • Benevides Rodrigues O; Syracuse University, Syracuse, New York 13244, USA.
  • Berkman S; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Bhanderi A; The University of Manchester, Manchester M13 9PL, United Kingdom.
  • Bhat A; Syracuse University, Syracuse, New York 13244, USA.
  • Bishai M; Brookhaven National Laboratory (BNL), Upton, New York 11973, USA.
  • Blake A; Lancaster University, Lancaster LA1 4YW, United Kingdom.
  • Bolton T; Kansas State University (KSU), Manhattan, Kansas 66506, USA.
  • Book JY; Harvard University, Cambridge, Massachusetts 02138, USA.
  • Camilleri L; Columbia University, New York, New York 10027, USA.
  • Caratelli D; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Caro Terrazas I; Colorado State University, Fort Collins, Colorado 80523, USA.
  • Castillo Fernandez R; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Cavanna F; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Cerati G; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Chen Y; Universität Bern, Bern CH-3012, Switzerland.
  • Cianci D; Columbia University, New York, New York 10027, USA.
  • Conrad JM; Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA.
  • Convery M; SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Cooper-Troendle L; Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA.
  • Crespo-Anadón JI; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain.
  • Del Tutto M; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Dennis SR; University of Cambridge, Cambridge CB3 0HE, United Kingdom.
  • Detje P; University of Cambridge, Cambridge CB3 0HE, United Kingdom.
  • Devitt A; Lancaster University, Lancaster LA1 4YW, United Kingdom.
  • Diurba R; University of Minnesota, Minneapolis, Minnesota 55455, USA.
  • Dorrill R; Illinois Institute of Technology (IIT), Chicago, Illinois 60616, USA.
  • Duffy K; Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA.
  • Dytman S; University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
  • Eberly B; University of Southern Maine, Portland, Maine 04104, USA.
  • Ereditato A; Universität Bern, Bern CH-3012, Switzerland.
  • Evans JJ; The University of Manchester, Manchester M13 9PL, United Kingdom.
  • Fine R; Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA.
  • Fiorentini Aguirre GA; South Dakota School of Mines and Technology (SDSMT), Rapid City, South Dakota 57701, USA.
  • Fitzpatrick RS; University of Michigan, Ann Arbor, Michigan 48109, USA.
  • Fleming BT; Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA.
  • Foppiani N; Harvard University, Cambridge, Massachusetts 02138, USA.
  • Franco D; Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA.
  • Furmanski AP; University of Minnesota, Minneapolis, Minnesota 55455, USA.
Phys Rev Lett ; 128(11): 111801, 2022 Mar 18.
Article em En | MEDLINE | ID: mdl-35363017
We report results from a search for neutrino-induced neutral current (NC) resonant Δ(1232) baryon production followed by Δ radiative decay, with a ⟨0.8⟩ GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80×10^{20} protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state (1γ1p and 1γ0p, respectively). The background is constrained via an in situ high-purity measurement of NC π^{0} events, made possible via dedicated 2γ1p and 2γ0p selections. A total of 16 and 153 events are observed for the 1γ1p and 1γ0p selections, respectively, compared to a constrained background prediction of 20.5±3.65(syst) and 145.1±13.8(syst) events. The data lead to a bound on an anomalous enhancement of the normalization of NC Δ radiative decay of less than 2.3 times the predicted nominal rate for this process at the 90% confidence level (C.L.). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of 3.18 times the nominal NC Δ radiative decay rate at the 94.8% C.L., in favor of the nominal prediction, and represents a greater than 50-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article