Your browser doesn't support javascript.
loading
Quantitative analysis of smokeless powder particles in post-blast debris via gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV).
Reavis, Madison; Goodpaster, John.
Afiliação
  • Reavis M; Forensic and Investigative Sciences Department, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.
  • Goodpaster J; Forensic and Investigative Sciences Department, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.
J Forensic Sci ; 67(4): 1431-1440, 2022 Jul.
Article em En | MEDLINE | ID: mdl-35368092
ABSTRACT
Forensic analysis of smokeless powder particles recovered from the debris of an improvised explosive device can provide information about the type of smokeless powder used and can aid investigation efforts. In this study, quantitative methods were used to yield information about the difference in the chemical composition of the particles pre- and post-blast. The technique, gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV), was able to quantify nitroglycerin, 2,4-dinitrotoluene, diphenylamine, ethyl centralite, and di-n-butyl phthalate in pre- and post-blast smokeless powder particles using heptadecane as an internal standard. Post-blast debris was obtained via controlled explosions with assistance from the Indiana State Police Bomb Squad. Two galvanized steel and two polyvinyl chloride pipe bombs were assembled. Two devices contained single-base smokeless powder and two contained double-base smokeless powder. 2,4-dinitrotoluene and diphenylamine were successfully quantified in the single-base smokeless powder post-blast debris while nitroglycerin, diphenylamine, and ethyl centralite were successfully quantified in the double-base smokeless powder post-blast debris. Compounds were detected at concentrations as low as 9 µg of 2,4-dinitrotoluene per mg, <3 µg of diphenylamine per mg, 131 µg of nitroglycerin per mg, and <3 µg of ethyl centralite per mg. Concentration changes between pre- and post-blast smokeless powder particles were determined as well as microscopic differences between pre- and post-blast debris for both smokeless powders in all devices. To our knowledge, this is the first use of GC/VUV for the quantification of explosives.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article