Your browser doesn't support javascript.
loading
SETDB1 interactions with PELP1 contributes to breast cancer endocrine therapy resistance.
Liu, Zexuan; Liu, Junhao; Ebrahimi, Behnam; Pratap, Uday P; He, Yi; Altwegg, Kristin A; Tang, Weiwei; Li, Xiaonan; Lai, Zhao; Chen, Yidong; Shen, Liangfang; Sareddy, Gangadhara R; Viswanadhapalli, Suryavathi; Tekmal, Rajeshwar R; Rao, Manjeet K; Vadlamudi, Ratna K.
Afiliação
  • Liu Z; Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.
  • Liu J; Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
  • Ebrahimi B; Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.
  • Pratap UP; Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
  • He Y; Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.
  • Altwegg KA; Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.
  • Tang W; Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.
  • Li X; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
  • Lai Z; Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.
  • Chen Y; Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
  • Shen L; Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.
  • Sareddy GR; Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.
  • Viswanadhapalli S; Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.
  • Tekmal RR; Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
  • Rao MK; Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
  • Vadlamudi RK; Dept of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
Breast Cancer Res ; 24(1): 26, 2022 04 08.
Article em En | MEDLINE | ID: mdl-35395812
ABSTRACT

BACKGROUND:

Methyltransferase SETDB1 is highly expressed in breast cancer (BC), however, the mechanisms by which SETDB1 promotes BC progression to endocrine therapy resistance remains elusive. In this study, we examined the mechanisms by which SETDB1 contribute to BC endocrine therapy resistance.

METHODS:

We utilized therapy sensitive (MCF7 and ZR75), therapy resistant (MCF7-TamR, MCF7-FR, MCF7-PELP1cyto, MCF7-SETDB1) estrogen receptor alpha positive (ER+)BC models and conducted in vitro cell viability, colony formation, 3-dimensional cell growth assays to investigate the role of SETDB1 in endocrine resistance. RNA-seq of parental and SETDB1 knock down ER+ BC cells was used to identify unique pathways. SETDB1 interaction with PELP1 was identified by yeast-two hybrid screen and confirmed by immunoprecipitation and GST-pull down assays. Mechanistic studies were conducted using Western blotting, reporter gene assays, RT-qPCR, and in vitro methylation assays. Xenograft assays were used to establish the role of PELP1 in SETDB1 mediated BC progression.

RESULTS:

RNA-seq analyses showed that SETDB1 regulates expression of a subset of estrogen receptor (ER) and Akt target genes that contribute to endocrine therapy resistance. Importantly, using yeast-two hybrid screen, we identified ER coregulator PELP1 as a novel interacting protein of SETDB1. Biochemical analyses confirmed SETDB1 and PELP1 interactions in multiple BC cells. Mechanistic studies confirmed that PELP1 is necessary for SETDB1 mediated Akt methylation and phosphorylation. Further, SETDB1 overexpression promotes tamoxifen resistance in BC cells, and PELP1 knockdown abolished these effects. Using xenograft model, we provided genetic evidence that PELP1 is essential for SETDB1 mediated BC progression in vivo. Analyses of TCGA datasets revealed SETDB1 expression is positively correlated with PELP1 expression in ER+ BC patients.

CONCLUSIONS:

This study suggests that the PELP1/SETDB1 axis play an important role in aberrant Akt activation and serves as a novel target for treating endocrine therapy resistance in breast cancer.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article