Your browser doesn't support javascript.
loading
Free or fixed state of nHAP differentially regulates hBMSC morphology and osteogenesis through the valve role of ITGA7.
Bao, Fangyuan; Yi, Junzhi; Liu, Yixiao; Zhong, Yuliang; Zhang, Hui; Wu, Zhonglin; Heng, Boon Chin; Wang, Ying; Wang, Ziyang; Xiao, Lizi; Liu, Hua; Ouyang, Hongwei; Zhou, Jing.
Afiliação
  • Bao F; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Yi J; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Liu Y; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Zhong Y; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Zhang H; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Wu Z; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Heng BC; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Wang Y; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Wang Z; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Xiao L; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Liu H; School of Stomatology, Peking University, Beijing, PR China.
  • Ouyang H; Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
  • Zhou J; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.
Bioact Mater ; 18: 539-551, 2022 Dec.
Article em En | MEDLINE | ID: mdl-35415300
ABSTRACT
Nano-hydroxyapatite (nHAP) has been widely used in bone repair as an osteo-inductive and naturally-occurring material. However, the optimal applied form of nHAP and the underlying mechanisms involved remain unclear. Herein, to investigate into these, a range of corresponding models were designed, including three applied forms of nHAP (Free, Coating and 3D) that belong to two states (Free or fixed). The results indicate that when fixed nHAP was applied in the 3D form, optimal osteogenesis was induced in human bone marrow stem cells (hBMSCs) with increased bone volume via integrin α7 (ITGA7)-mediated upregulation of the PI3K-AKT signaling pathway, while contrary results were observed with free nHAP. Ectopic osteogenesis experiments in mice subcutaneous transplantation model further confirmed the different tendencies of ITGA7 expression and osteogenesis of hBMSCs in free and fixed states of nHAP. Our results revealed that the two states of nHAP play a different regulatory role in cell morphology and osteogenesis through the valve role of ITGA7, providing cues for better application of nanoparticles and a potential new molecular target in bone tissue engineering.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article