Your browser doesn't support javascript.
loading
Synthetic hydrogels engineered to promote collecting lymphatic vessel sprouting.
Hooks, Joshua S T; Bernard, Fabrice C; Cruz-Acuña, Ricardo; Nepiyushchikh, Zhanna; Gonzalez-Vargas, Yarelis; García, Andrés J; Dixon, J Brandon.
Afiliação
  • Hooks JST; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA.
  • Bernard FC; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
  • Cruz-Acuña R; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
  • Nepiyushchikh Z; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA.
  • Gonzalez-Vargas Y; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA.
  • García AJ; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA; Wallace H. Coulter Department of Biomedica
  • Dixon JB; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA; Wallace H. Coulter Department of Biomedica
Biomaterials ; 284: 121483, 2022 05.
Article em En | MEDLINE | ID: mdl-35428014
ABSTRACT
The lymphatic vasculature is an essential component of the body's circulation providing a network of vessels to return fluid and proteins from the tissue space to the blood, to facilitate immune ce-ll and antigen transport to lymph nodes, and to take up dietary lipid from the intestine. The development of biomaterial-based strategies to facilitate the growth of lymphatics either for regenerative purposes or as model system to study lymphatic biology is still in its nascent stages. In particular, platforms that encourage the sprouting and formation of lymphatic networks from collecting vessels are particularly underdeveloped. Through implementation of a modular, poly(ethylene glycol) (PEG)-based hydrogel, we explored the independent contributions of matrix elasticity, degradability, and adhesive peptide presentation on sprouting of implanted segments of rat lymphatic collecting vessels. An engineered hydrogel with 680 Pa elasticity, 2.0 mM RGD adhesive peptide, and full susceptibility to protease degradability produced the highest levels of sprouting relative to other physicochemical matrix properties. This engineered hydrogel was then utilized as a scaffold to facilitate the implantation of a donor vessel that functionally grafted into the host vasculature. This hydrogel provides a promising platform for facilitating lymphangiogenesis in vivo or as a means to understand the cellular mechanisms involved in the sprout process during collecting lymphatic vessel collateralization.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrogéis / Vasos Linfáticos Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrogéis / Vasos Linfáticos Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article