Your browser doesn't support javascript.
loading
Advanced Current Collector Materials for High-Performance Lithium Metal Anodes.
Li, Dongdong; Hu, Henghui; Chen, Bin; Lai, Wen-Yong.
Afiliação
  • Li D; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China.
  • Hu H; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China.
  • Chen B; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China.
  • Lai WY; State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China.
Small ; 18(24): e2200010, 2022 Jun.
Article em En | MEDLINE | ID: mdl-35445540
ABSTRACT
Lithium metal, as the "Holy Grail" of lithium battery anodes, is promising to be used in the next-generation of high-energy-density storage devices. However, serious safety risk and poor cycle performance are inevitable when bare lithium foil is used as the anode material, due to the uncontrolled growth of lithium dendrites, unstable solid electrolyte interface, and infinite volume expansion of lithium during cycling, which largely hinder the further commercial application of lithium metal batteries (LMBs). The utilization of up-to-date current collectors with specific composition and structure is believed to be effective to overcome these shortcomings. However, a systematic evaluation of the merit of different current collector materials for realizing high-performance lithium metal anodes is still lacking. This review summarizes the fashionable advanced current collector materials for long-life LMBs in recent years. The superiorities and related electrochemical performances by using these current collector materials are discussed in detail. It is expected that this review may promote the rational choice of appreciatory current collector materials with unique structure designs to extend the cycle life of lithium metal anodes for achieving the next-generation of high-energy-density LMBs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article