Your browser doesn't support javascript.
loading
Back-Gated van der Waals Heterojunction Manipulates Local Charges toward Fine-Tuning Hydrogen Evolution.
Huang, Jiazhao; Zhuang, Zechao; Zhao, Yang; Chen, Jianqiang; Zhuo, Zhiwen; Liu, Youwen; Lu, Ning; Li, Huiqiao; Zhai, Tianyou.
Afiliação
  • Huang J; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
  • Zhuang Z; Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  • Zhao Y; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
  • Chen J; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
  • Zhuo Z; Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Department of Physics, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China.
  • Liu Y; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
  • Lu N; Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Department of Physics, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China.
  • Li H; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
  • Zhai T; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Angew Chem Int Ed Engl ; 61(32): e202203522, 2022 Aug 08.
Article em En | MEDLINE | ID: mdl-35452184
Charge redistribution plays a prominent role in interpreting the intrinsic electrocatalytic mechanism. Establishing a quantitative relationship between the local charges and electrochemical performance can fundamentally update the design philosophies beyond conventional methods. We describe exertion of an external electric field in the cobalt phthalocyanine (CoPc)/MoS2 heterojunction to finely manipulate intermolecular charge transfer. The injected charges (e- ) from CoPc to MoS2 migrate to natural S vacancies and enhance Mo-H bonding. Moreover, the band gap of MoS2 and CoPc can be readily tuned by the electric field, verifying band engineering at the heterointerface. In situ photoluminescence spectra and gate-dependent electrochemical measurement reveal a linear correlation between the charge accumulation and hydrogen evolution reaction (HER) activity. This approach provides a new strategy for the design of catalysts, enabling precise regulation of the electronic configuration to improve catalytic activity.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article