Your browser doesn't support javascript.
loading
RhoA-ROCK competes with YAP to regulate amoeboid breast cancer cell migration in response to lymphatic-like flow.
Mohammadalipour, Amina; Diaz, Miguel F; Livingston, Megan; Ewere, Adesuwa; Zhou, Allen; Horton, Paulina D; Olamigoke, Loretta T; Lamar, John M; Hagan, John P; Lee, Hyun J; Wenzel, Pamela L.
Afiliação
  • Mohammadalipour A; Department of Integrative Biology & Pharmacology The University of Texas Health Science Center at Houston Texas USA.
  • Diaz MF; Department of Integrative Biology & Pharmacology The University of Texas Health Science Center at Houston Texas USA.
  • Livingston M; Children's Regenerative Medicine Program Department of Pediatric Surgery The University of Texas Health Science Center at Houston Texas USA.
  • Ewere A; Center for Stem Cell and Regenerative Medicine Brown Foundation Institute of Molecular Medicine The University of Texas Health Science Center at Houston Texas USA.
  • Zhou A; Department of Integrative Biology & Pharmacology The University of Texas Health Science Center at Houston Texas USA.
  • Horton PD; Children's Regenerative Medicine Program Department of Pediatric Surgery The University of Texas Health Science Center at Houston Texas USA.
  • Olamigoke LT; Center for Stem Cell and Regenerative Medicine Brown Foundation Institute of Molecular Medicine The University of Texas Health Science Center at Houston Texas USA.
  • Lamar JM; Biochemistry and Cell Biology Program MD Anderson UTHealth Graduate School of Biomedical Sciences The University of Texas Houston Texas USA.
  • Hagan JP; Children's Regenerative Medicine Program Department of Pediatric Surgery The University of Texas Health Science Center at Houston Texas USA.
  • Lee HJ; Center for Stem Cell and Regenerative Medicine Brown Foundation Institute of Molecular Medicine The University of Texas Health Science Center at Houston Texas USA.
  • Wenzel PL; School of Medicine University of Texas Medical Branch Galveston Texas USA.
FASEB Bioadv ; 4(5): 342-361, 2022 May.
Article em En | MEDLINE | ID: mdl-35520391
ABSTRACT
Lymphatic drainage generates force that induces prostate cancer cell motility via activation of Yes-associated protein (YAP), but whether this response to fluid force is conserved across cancer types is unclear. Here, we show that shear stress corresponding to fluid flow in the initial lymphatics modifies taxis in breast cancer, whereas some cell lines use rapid amoeboid migration behavior in response to fluid flow, a separate subset decrease movement. Positive responders displayed transcriptional profiles characteristic of an amoeboid cell state, which is typical of cells advancing at the edges of neoplastic tumors. Regulation of the HIPPO tumor suppressor pathway and YAP activity also differed between breast subsets and prostate cancer. Although subcellular localization of YAP to the nucleus positively correlated with overall velocity of locomotion, YAP gain- and loss-of-function demonstrates that YAP inhibits breast cancer motility but is outcompeted by other pro-taxis mediators in the context of flow. Specifically, we show that RhoA dictates response to flow. GTPase activity of RhoA, but not Rac1 or Cdc42 Rho family GTPases, is elevated in cells that positively respond to flow and is unchanged in cells that decelerate under flow. Disruption of RhoA or the RhoA effector, Rho-associated kinase (ROCK), blocked shear stress-induced motility. Collectively, these findings identify biomechanical force as a regulator amoeboid cell migration and demonstrate stratification of breast cancer subsets by flow-sensing mechanotransduction pathways.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article