A comprehensive evaluation of regression-based drug responsiveness prediction models, using cell viability inhibitory concentrations (IC50 values).
Bioinformatics
; 38(10): 2810-2817, 2022 05 13.
Article
em En
| MEDLINE
| ID: mdl-35561188
MOTIVATION: Predicting drug response is critical for precision medicine. Diverse methods have predicted drug responsiveness, as measured by the half-maximal drug inhibitory concentration (IC50), in cultured cells. Although IC50s are continuous, traditional prediction models have dealt mainly with binary classification of responsiveness. However, since there are few regression-based IC50 predictions, comprehensive evaluations of regression-based IC50 prediction models, including machine learning (ML) and deep learning (DL), for diverse data types and dataset sizes, have not been addressed. RESULTS: Here, we constructed 11 input data settings, including multi-omics settings, with varying dataset sizes, then evaluated the performance of regression-based ML and DL models to predict IC50s. DL models considered two convolutional neural network architectures: CDRScan and residual neural network (ResNet). ResNet was introduced in regression-based DL models for predicting drug response for the first time. As a result, DL models performed better than ML models in all the settings. Also, ResNet performed better than or comparable to CDRScan and ML models in all settings. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available in GitHub at https://github.com/labnams/IC50evaluation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Redes Neurais de Computação
/
Aprendizado de Máquina
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article