Maximizing the forward scattering of dielectric nanoantennas through surface impedance coatings.
Opt Lett
; 47(10): 2386-2389, 2022 May 15.
Article
em En
| MEDLINE
| ID: mdl-35561357
In this Letter, we discuss a novel, to the best of our knowledge, approach for designing passive nanoantennas with maximum forward and almost-zero backward scattering. The proposed approach is based on the use of high-index dielectric spheres supporting dipolar magnetic resonances, which are coated by ultra-thin surface impedance coatings. It is shown that, by properly engineering the radius of the coat and its surface reactance, it is possible to introduce an additional electric dipolar resonance and to make this overlap with the magnetic one sustained by the high-index dielectric sphere. A realistic design that is based on graphene and works in the low-THz range is also proposed and verified with full-wave simulations. Compared to earlier techniques based on the combination of multipoles or on the use of ellipsoidal particles, the proposed one is quite robust toward realistic ohmic losses and preserves the isotropic behavior of the nanoantenna.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article