Your browser doesn't support javascript.
loading
Functional connectivity maps of theta/alpha and beta coherence within the subthalamic nucleus region.
van Wijk, Bernadette C M; Neumann, Wolf-Julian; Kroneberg, Daniel; Horn, Andreas; Irmen, Friederike; Sander, Tilmann H; Wang, Qiang; Litvak, Vladimir; Kühn, Andrea A.
Afiliação
  • van Wijk BCM; Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands; Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands; Movement Disorder and Neuromodulation
  • Neumann WJ; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Kroneberg D; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Horn A; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Br
  • Irmen F; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Sander TH; Physikalisch-Technische Bundesanstalt, Institut Berlin, Germany.
  • Wang Q; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Litvak V; Wellcome Centre for Human Neuroimaging, University College London, UK.
  • Kühn AA; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin
Neuroimage ; 257: 119320, 2022 08 15.
Article em En | MEDLINE | ID: mdl-35580809
ABSTRACT
The subthalamic nucleus (STN) is a primary target for deep brain stimulation in Parkinson's disease (PD). Although small in size, the STN is commonly partitioned into sensorimotor, cognitive/associative, and limbic subregions based on its structural connectivity profile to cortical areas. We investigated whether such a regional specialization is also supported by functional connectivity between local field potential recordings and simultaneous magnetoencephalography. Using a novel data set of 21 PD patients, we replicated previously reported cortico-STN coherence networks in the theta/alpha and beta frequency ranges, and looked for the spatial distribution of these networks within the STN region. Although theta/alpha and beta coherence peaks were both observed in on-medication recordings from electrode contacts at several locations within and around the STN, sites with theta/alpha coherence peaks were situated at significantly more inferior MNI coordinates than beta coherence peaks. Sites with only theta/alpha coherence peaks, i.e. without distinct beta coherence, were mostly located near the border of sensorimotor and cognitive/associative subregions as defined by a tractography-based atlas of the STN. Peak coherence values were largely unaltered by the medication state of the subject, however, theta/alpha peaks were more often identified in recordings obtained after administration of dopaminergic medication. Our findings suggest the existence of a frequency-specific topography of cortico-STN coherence within the STN, albeit with considerable spatial overlap between functional networks. Consequently, optimization of deep brain stimulation targeting might remain a trade-off between alleviating motor symptoms and avoiding adverse neuropsychiatric side effects.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Núcleo Subtalâmico / Estimulação Encefálica Profunda Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Núcleo Subtalâmico / Estimulação Encefálica Profunda Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article