Acute methyl jasmonate exposure results in major bursts of stress volatiles, but in surprisingly low impact on specialized volatile emissions in the fragrant grass Cymbopogon flexuosus.
J Plant Physiol
; 274: 153721, 2022 Jul.
Article
em En
| MEDLINE
| ID: mdl-35597107
Methyl jasmonate (MeJA) is an airborne hormonal elicitor that induces a fast rise of emissions of characteristic stress marker compounds methanol and green leaf volatiles (GLV), and a longer-term release of volatile terpenoids, but there is limited information of how terpene emissions respond to MeJA in terpene-storing species. East-Indian lemongrass (Cymbopogon flexuosus), an aromatic herb with a large terpenoid storage pool in idioblasts, was used to investigate the short- (0-1 h) and long-term (1-16 h) responses of leaf net assimilation rate (A), stomatal conductance (Gs) and volatile emissions to MeJA concentrations ranging from moderate to lethal. Both A and Gs were increasingly inhibited with increasing MeJA concentration in both short and long term. MeJA exposure resulted in a rapid elicitation, within 1 h after exposure, of methanol and GLV emissions. Subsequently, a secondary rise of GLV emissions was observed, peaking at 2 h after MeJA exposure for the highest and at 8 h for the lowest application concentration. The total amount and maximum emission rate of methanol and the first and second GLV emission bursts were positively correlated with MeJA concentration. Unexpectedly, no de novo elicitation of terpene emissions was observed through the experiment. Although high MeJA application concentrations led to visible lesions and desiccation in extensive leaf regions, this did not result in breakage of terpene-storing idioblasts. The study highlights an overall insensitivity of lemongrass to MeJA and indicates that differently from mechanical wounding, MeJA-driven cellular death does not break terpene-storing cells. Further studies are needed to characterize the sensitivity of induced defense responses in species with strongly developed constitutive defenses.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Cymbopogon
/
Compostos Orgânicos Voláteis
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article