Your browser doesn't support javascript.
loading
Coupling surfactants with ISCO for remediating of NAPLs: Recent progress and application challenges.
Xu, Jing-Cheng; Yang, Li-Heng; Yuan, Jing-Xi; Li, Shuang-Qiang; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng; Liu, Jia.
Afiliação
  • Xu JC; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
  • Yang LH; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
  • Yuan JX; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
  • Li SQ; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
  • Peng KM; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
  • Lu LJ; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
  • Huang XF; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Fronti
  • Liu J; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Fronti
Chemosphere ; 303(Pt 1): 135004, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35598784
Non-aqueous phase liquids (NAPLs) pose a serious risk to the soil-groundwater environment. Coupling surfactants with in situ chemical oxidation (ISCO) technology is a promising strategy, which is attributed to the enhanced desorption and solubilization efficiency of NAPL contaminants. However, the complex interactions among surfactants, oxidation systems, and NAPL contaminants have not been fully revealed. This review provides a comprehensive overview on the development of surfactant-coupled ISCO technology focusing on the effects of surfactants on oxidation systems and NAPLs degradation behavior. Specifically, we discussed the compatibility between surfactants and oxidation systems, including the non-productive consumption of oxidants by surfactants, the role of surfactants in catalytic oxidation systems, and the loss of surfactants solubilization capacity during oxidation process. The effect of surfactants on the degradation behavior of NAPL contaminants is then thoroughly summarized in terms of degradation kinetics, byproducts and degradation mechanisms. This review demonstrates that it is crucial to minimize the negative effects of surfactants on NAPL contaminants oxidation process by fully understanding the interaction between surfactants and oxidation systems, which would promote the successful implementation of surfactant-coupled ISCO technology in remediation of NAPLs-contaminated sites.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Poluentes Químicos da Água / Água Subterrânea / Surfactantes Pulmonares Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Poluentes Químicos da Água / Água Subterrânea / Surfactantes Pulmonares Idioma: En Ano de publicação: 2022 Tipo de documento: Article