Your browser doesn't support javascript.
loading
Targeting the human ßc receptor inhibits inflammatory myeloid cells and lung injury caused by acute cigarette smoke exposure.
Fung, Nok Him; Wang, Hao; Vlahos, Ross; Wilson, Nick; Lopez, Angel F; Owczarek, Catherine M; Bozinovski, Steven.
Afiliação
  • Fung NH; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria.
  • Wang H; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria.
  • Vlahos R; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria.
  • Wilson N; CSL Limited, Parkville, Victoria, Australia.
  • Lopez AF; Centre for Cancer Biology, SA Pathology and UniSA, Adelaide, South Australia, Australia.
  • Owczarek CM; CSL Limited, Parkville, Victoria, Australia.
  • Bozinovski S; School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria.
Respirology ; 27(8): 617-629, 2022 08.
Article em En | MEDLINE | ID: mdl-35599245
ABSTRACT
BACKGROUND AND

OBJECTIVE:

Chronic obstructive pulmonary disease (COPD) is a devastating disease commonly caused by cigarette smoke (CS) exposure that drives tissue injury by persistently recruiting myeloid cells into the lungs. A significant portion of COPD patients also present with overlapping asthma pathology including eosinophilic inflammation. The ßc cytokine family includes granulocyte monocyte-colony-stimulating factor, IL-5 and IL-3 that signal through their common receptor subunit ßc to promote the expansion and survival of multiple myeloid cells including monocytes/macrophages, neutrophils and eosinophils.

METHODS:

We have used our unique human ßc receptor transgenic (hßc Tg) mouse strain that expresses human ßc instead of mouse ßc and ßIL3 in an acute CS exposure model. Lung tissue injury was assessed by histology and measurement of albumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid. Transgenic mice were treated with an antibody (CSL311) that inhibits human ßc signalling.

RESULTS:

hßc Tg mice responded to acute CS exposure by expanding blood myeloid cell numbers and recruiting monocyte-derived macrophages (cluster of differentiation 11b+ [CD11b+ ] interstitial and exudative macrophages [IM and ExM]), neutrophils and eosinophils into the lungs. This inflammatory response was associated with lung tissue injury and oedema. Importantly, CSL311 treatment in CS-exposed mice markedly reduced myeloid cell numbers in the blood and BAL compartment. Furthermore, CSL311 significantly reduced lung CD11b+ IM and ExM, neutrophils and eosinophils, and this decline was associated with a significant reduction in matrix metalloproteinase-12 (MMP-12) and IL-17A expression, tissue injury and oedema.

CONCLUSION:

This study identifies CSL311 as a therapeutic antibody that potently inhibits immunopathology and lung injury caused by acute CS exposure.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença Pulmonar Obstrutiva Crônica / Lesão Pulmonar / Fumar Cigarros Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença Pulmonar Obstrutiva Crônica / Lesão Pulmonar / Fumar Cigarros Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article