Your browser doesn't support javascript.
loading
Exploring Compound Eyes in Adults of Four Coleopteran Species Using Synchrotron X-ray Phase-Contrast Microtomography (SR-PhC Micro-CT).
Giglio, Anita; Vommaro, Maria Luigia; Agostino, Raffaele Giuseppe; Lo, Lai Ka; Donato, Sandro.
Afiliação
  • Giglio A; Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
  • Vommaro ML; Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
  • Agostino RG; Department of Physics and STAR-LAB, University of Calabria, Via Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
  • Lo LK; Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia (Nanotec)-UoS Cosenza, Via Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
  • Donato S; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany.
Life (Basel) ; 12(5)2022 May 17.
Article em En | MEDLINE | ID: mdl-35629408
ABSTRACT
Compound eyes in insects are primary visual receptors of surrounding environments. They show considerable design variations, from the apposition vision of most day-active species to the superposition vision of nocturnal insects, that sacrifice resolution to increase sensitivity and are able to overcome the challenges of vision during lightless hours or in dim habitats. In this study, Synchrotron radiation X-ray phase-contrast microtomography was used to describe the eye structure of four coleopteran species, showing species-specific habitat demands and different feeding habits, namely the saproxylic Clinidium canaliculatum (Costa, 1839) (Rhysodidae), the omnivorous Tenebrio molitor (Linnaeus, 1758) and Tribolium castaneum (Herbest, 1797) (Tenebrionidae), and the generalist predator Pterostichus melas italicus (Dejean, 1828) (Carabidae). Virtual sections and 3D volume renderings of the heads were performed to evaluate the application and limitations of this technique for studying the internal dioptrical and sensorial parts of eyes, and to avoid time-consuming methods such as ultrastructural analyses and classic histology. Morphological parameters such as the area of the corneal facet lens and cornea, interocular distance, facet density and corneal lens thickness were measured, and differences among the studied species were discussed concerning the differences in lifestyle and habitat preferences making different demands on the visual system. Our imaging results provide, for the first time, morphological descriptions of the compound eyes in these species, supplementing their ecological and behavioural traits.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article