Enhancement of immune responses using ovalbumin-conjugated Eucommia ulmoides leaf polysaccharides encapsulated in a cubic liquid-crystalline phase delivery system.
J Sci Food Agric
; 102(14): 6757-6770, 2022 Nov.
Article
em En
| MEDLINE
| ID: mdl-35638143
BACKGROUND: To improve the adjuvant activity of polysaccharides from Eucommia ulmoides leaves (PsEUL) in inducing an effective immune response against ovalbumin (OVA), PsEUL were conjugated to OVA using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) method. The synthesized PsEUL-OVA was encapsulated using phytantriol and F127 to produce PsEUL-OVA cubosomes (Cubs), a novel delivery system. The physicochemical properties and immune modulation effects of this novel delivery system were explored. RESULTS: In vitro, PsEUL-OVA/Cubs carrying large amounts of OVA were rapidly phagocytized by macrophages and upregulated macrophage proliferation, thereby stimulating cytokine production (interleukin (IL)-6 and IL-4). In vivo, PsEUL-OVA/Cubs increased the titer of OVA-specific antibodies (immunoglobulin (Ig)G, IgG2b, IgG2a and IgG1) and cytokine levels (IL-2, IL-6, IL-4 and interferon-γ). In addition, the cubosomes promoted the differentiation of CD8+ and CD4+ T cells in the spleen and the maturation of dendritic cells (DCs). These results indicated that PsEUL-OVA/Cubs stimulated both cellular and humoral immune responses by enhancing the phagocytic activity of DCs and macrophages and increasing the antigen presentation efficiency. CONCLUSION: Collectively, the findings demonstrate that PsEUL-antigen/Cubs can be a useful delivery vehicle with immune response-promoting effects. Therefore, this study lays the foundation for the development of novel adjuvant-antigen delivery systems with potential applications in vaccine design. © 2022 Society of Chemical Industry.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Vacinas
/
Eucommiaceae
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article