Your browser doesn't support javascript.
loading
Inhibition of histone H3-H4 chaperone pathways rescues C. elegans sterility by H2B loss.
Zhao, Ruixue; Zhu, Zhiwen; Geng, Ruxu; Jiang, Xuguang; Li, Wei; Ou, Guangshuo.
Afiliação
  • Zhao R; Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China.
  • Zhu Z; Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China.
  • Geng R; Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China.
  • Jiang X; Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China.
  • Li W; School of Medicine, Tsinghua University, Beijing, China.
  • Ou G; Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China.
PLoS Genet ; 18(6): e1010223, 2022 06.
Article em En | MEDLINE | ID: mdl-35679337
Oncohistone mutations are crucial drivers for tumorigenesis, but how a living organism governs the loss-of-function oncohistone remains unclear. We generated a histone H2B triple knockout (3KO) strain in Caenorhabditis elegans, which decreased the embryonic H2B, disrupted cell divisions, and caused animal sterility. By performing genetic suppressor screens, we uncovered that mutations defective in the histone H3-H4 chaperone UNC-85 restored H2B 3KO fertility by decreasing chromatin H3-H4 levels. RNA interference of other H3-H4 chaperones or H3 or H4 histones also rescued H2B 3KO sterility. We showed that blocking H3-H4 chaperones recovered cell division in C. elegans carrying the oncohistone H2BE74K mutation that distorts the H2B-H4 interface and induces nucleosome instability. Our results indicate that reducing chromatin H3-H4 rescues the dysfunctional H2B in vivo and suggest that inhibiting H3-H4 chaperones may provide an effective therapeutic strategy for treating cancers resulting from loss-of-function H2B oncohistone.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Histonas / Infertilidade Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Histonas / Infertilidade Limite: Animals Idioma: En Ano de publicação: 2022 Tipo de documento: Article