Your browser doesn't support javascript.
loading
RNase H-based analysis of synthetic mRNA 5' cap incorporation.
Chan, S Hong; Whipple, Joseph M; Dai, Nan; Kelley, Theresa M; Withers, Kathryn; Tzertzinis, George; Corrêa, Ivan R; Robb, G Brett.
Afiliação
  • Chan SH; New England Biolabs, Ipswich, Massachusetts 01938, USA.
  • Whipple JM; New England Biolabs, Ipswich, Massachusetts 01938, USA.
  • Dai N; New England Biolabs, Ipswich, Massachusetts 01938, USA.
  • Kelley TM; New England Biolabs, Ipswich, Massachusetts 01938, USA.
  • Withers K; New England Biolabs, Ipswich, Massachusetts 01938, USA.
  • Tzertzinis G; New England Biolabs, Ipswich, Massachusetts 01938, USA.
  • Corrêa IR; New England Biolabs, Ipswich, Massachusetts 01938, USA.
  • Robb GB; New England Biolabs, Ipswich, Massachusetts 01938, USA.
RNA ; 28(8): 1144-1155, 2022 08.
Article em En | MEDLINE | ID: mdl-35680168
ABSTRACT
Advances in mRNA synthesis and lipid nanoparticles technologies have helped make mRNA therapeutics and vaccines a reality. The 5' cap structure is a crucial modification required to functionalize synthetic mRNA for efficient protein translation in vivo and evasion of cellular innate immune responses. The extent of 5' cap incorporation is one of the critical quality attributes in mRNA manufacturing. RNA cap analysis involves multiple

steps:

generation of predefined short fragments from the 5' end of the kilobase-long synthetic mRNA molecules using RNase H, a ribozyme or a DNAzyme, enrichment of the 5' cleavage products, and LC-MS intact mass analysis. In this paper, we describe (1) a framework to design site-specific RNA cleavage using RNase H; (2) a method to fluorescently label the RNase H cleavage fragments for more accessible readout methods such as gel electrophoresis or high-throughput capillary electrophoresis; (3) a simplified method for post-RNase H purification using desthiobiotinylated oligonucleotides and streptavidin magnetic beads followed by elution using water. By providing a design framework for RNase H-based RNA 5' cap analysis using less resource-intensive analytical methods, we hope to make RNA cap analysis more accessible to the scientific community.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ribonuclease H / Lipossomos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ribonuclease H / Lipossomos Idioma: En Ano de publicação: 2022 Tipo de documento: Article